Copied to
clipboard

G = C2xC34order 68 = 22·17

Abelian group of type [2,34]

direct product, abelian, monomial, 2-elementary

Aliases: C2xC34, SmallGroup(68,5)

Series: Derived Chief Lower central Upper central

C1 — C2xC34
C1C17C34 — C2xC34
C1 — C2xC34
C1 — C2xC34

Generators and relations for C2xC34
 G = < a,b | a2=b34=1, ab=ba >

Subgroups: 10, all normal (4 characteristic)
Quotients: C1, C2, C22, C17, C34, C2xC34

Smallest permutation representation of C2xC34
Regular action on 68 points
Generators in S68
(1 66)(2 67)(3 68)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)(32 63)(33 64)(34 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)

G:=sub<Sym(68)| (1,66)(2,67)(3,68)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62)(32,63)(33,64)(34,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)>;

G:=Group( (1,66)(2,67)(3,68)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62)(32,63)(33,64)(34,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68) );

G=PermutationGroup([[(1,66),(2,67),(3,68),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62),(32,63),(33,64),(34,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)]])

C2xC34 is a maximal subgroup of   C17:D4

68 conjugacy classes

class 1 2A2B2C17A···17P34A···34AV
order122217···1734···34
size11111···11···1

68 irreducible representations

dim1111
type++
imageC1C2C17C34
kernelC2xC34C34C22C2
# reps131648

Matrix representation of C2xC34 in GL2(F103) generated by

10
0102
,
730
013
G:=sub<GL(2,GF(103))| [1,0,0,102],[73,0,0,13] >;

C2xC34 in GAP, Magma, Sage, TeX

C_2\times C_{34}
% in TeX

G:=Group("C2xC34");
// GroupNames label

G:=SmallGroup(68,5);
// by ID

G=gap.SmallGroup(68,5);
# by ID

G:=PCGroup([3,-2,-2,-17]);
// Polycyclic

G:=Group<a,b|a^2=b^34=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2xC34 in TeX

׿
x
:
Z
F
o
wr
Q
<