Copied to
clipboard

G = C2×C29⋊C7order 406 = 2·7·29

Direct product of C2 and C29⋊C7

direct product, metacyclic, supersoluble, monomial, Z-group, 7-hyperelementary

Aliases: C2×C29⋊C7, C58⋊C7, C292C14, SmallGroup(406,2)

Series: Derived Chief Lower central Upper central

C1C29 — C2×C29⋊C7
C1C29C29⋊C7 — C2×C29⋊C7
C29 — C2×C29⋊C7
C1C2

Generators and relations for C2×C29⋊C7
 G = < a,b,c | a2=b29=c7=1, ab=ba, ac=ca, cbc-1=b20 >

29C7
29C14

Character table of C2×C29⋊C7

 class 127A7B7C7D7E7F14A14B14C14D14E14F29A29B29C29D58A58B58C58D
 size 1129292929292929292929292977777777
ρ11111111111111111111111    trivial
ρ21-1111111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ31-1ζ74ζ73ζ76ζ72ζ75ζ7747376727571111-1-1-1-1    linear of order 14
ρ41-1ζ7ζ76ζ75ζ74ζ73ζ72776757473721111-1-1-1-1    linear of order 14
ρ51-1ζ75ζ72ζ74ζ76ζ7ζ73757274767731111-1-1-1-1    linear of order 14
ρ61-1ζ72ζ75ζ73ζ7ζ76ζ74727573776741111-1-1-1-1    linear of order 14
ρ711ζ74ζ73ζ76ζ72ζ75ζ7ζ74ζ73ζ76ζ72ζ75ζ711111111    linear of order 7
ρ811ζ73ζ74ζ7ζ75ζ72ζ76ζ73ζ74ζ7ζ75ζ72ζ7611111111    linear of order 7
ρ91-1ζ76ζ7ζ72ζ73ζ74ζ75767727374751111-1-1-1-1    linear of order 14
ρ1011ζ72ζ75ζ73ζ7ζ76ζ74ζ72ζ75ζ73ζ7ζ76ζ7411111111    linear of order 7
ρ1111ζ76ζ7ζ72ζ73ζ74ζ75ζ76ζ7ζ72ζ73ζ74ζ7511111111    linear of order 7
ρ121-1ζ73ζ74ζ7ζ75ζ72ζ76737477572761111-1-1-1-1    linear of order 14
ρ1311ζ75ζ72ζ74ζ76ζ7ζ73ζ75ζ72ζ74ζ76ζ7ζ7311111111    linear of order 7
ρ1411ζ7ζ76ζ75ζ74ζ73ζ72ζ7ζ76ζ75ζ74ζ73ζ7211111111    linear of order 7
ρ157-7000000000000ζ292729262918291529122910298ζ2925292429232920291629729ζ29212919291729142911293292ζ292829222913299296295294292529242923292029162972929212919291729142911293292292829222913299296295294292729262918291529122910298    complex faithful
ρ167-7000000000000ζ2925292429232920291629729ζ29212919291729142911293292ζ292829222913299296295294ζ292729262918291529122910298292129192917291429112932922928292229132992962952942927292629182915291229102982925292429232920291629729    complex faithful
ρ177-7000000000000ζ29212919291729142911293292ζ292829222913299296295294ζ292729262918291529122910298ζ2925292429232920291629729292829222913299296295294292729262918291529122910298292529242923292029162972929212919291729142911293292    complex faithful
ρ1877000000000000ζ2925292429232920291629729ζ29212919291729142911293292ζ292829222913299296295294ζ292729262918291529122910298ζ29212919291729142911293292ζ292829222913299296295294ζ292729262918291529122910298ζ2925292429232920291629729    complex lifted from C29⋊C7
ρ1977000000000000ζ292729262918291529122910298ζ2925292429232920291629729ζ29212919291729142911293292ζ292829222913299296295294ζ2925292429232920291629729ζ29212919291729142911293292ζ292829222913299296295294ζ292729262918291529122910298    complex lifted from C29⋊C7
ρ207-7000000000000ζ292829222913299296295294ζ292729262918291529122910298ζ2925292429232920291629729ζ29212919291729142911293292292729262918291529122910298292529242923292029162972929212919291729142911293292292829222913299296295294    complex faithful
ρ2177000000000000ζ29212919291729142911293292ζ292829222913299296295294ζ292729262918291529122910298ζ2925292429232920291629729ζ292829222913299296295294ζ292729262918291529122910298ζ2925292429232920291629729ζ29212919291729142911293292    complex lifted from C29⋊C7
ρ2277000000000000ζ292829222913299296295294ζ292729262918291529122910298ζ2925292429232920291629729ζ29212919291729142911293292ζ292729262918291529122910298ζ2925292429232920291629729ζ29212919291729142911293292ζ292829222913299296295294    complex lifted from C29⋊C7

Smallest permutation representation of C2×C29⋊C7
On 58 points
Generators in S58
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)
(2 17 25 8 26 24 21)(3 4 20 15 22 18 12)(5 7 10 29 14 6 23)(9 13 19 28 27 11 16)(31 46 54 37 55 53 50)(32 33 49 44 51 47 41)(34 36 39 58 43 35 52)(38 42 48 57 56 40 45)

G:=sub<Sym(58)| (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,17,25,8,26,24,21)(3,4,20,15,22,18,12)(5,7,10,29,14,6,23)(9,13,19,28,27,11,16)(31,46,54,37,55,53,50)(32,33,49,44,51,47,41)(34,36,39,58,43,35,52)(38,42,48,57,56,40,45)>;

G:=Group( (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,17,25,8,26,24,21)(3,4,20,15,22,18,12)(5,7,10,29,14,6,23)(9,13,19,28,27,11,16)(31,46,54,37,55,53,50)(32,33,49,44,51,47,41)(34,36,39,58,43,35,52)(38,42,48,57,56,40,45) );

G=PermutationGroup([[(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)], [(2,17,25,8,26,24,21),(3,4,20,15,22,18,12),(5,7,10,29,14,6,23),(9,13,19,28,27,11,16),(31,46,54,37,55,53,50),(32,33,49,44,51,47,41),(34,36,39,58,43,35,52),(38,42,48,57,56,40,45)]])

Matrix representation of C2×C29⋊C7 in GL8(𝔽2437)

24360000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
048574414241281195021741
048674414241281195021741
048574514241281195021741
048574414251281195021741
048574414241282195021741
048574414241281195121741
048574414241281195021751
,
4920000000
0231209187049113911342210
02133240538274233011911909
00100000
019813694978312791794411
0232112614932330239213862026
00001000
01514145911996131215701500

G:=sub<GL(8,GF(2437))| [2436,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,485,486,485,485,485,485,485,0,744,744,745,744,744,744,744,0,1424,1424,1424,1425,1424,1424,1424,0,1281,1281,1281,1281,1282,1281,1281,0,1950,1950,1950,1950,1950,1951,1950,0,2174,2174,2174,2174,2174,2174,2175,0,1,1,1,1,1,1,1],[492,0,0,0,0,0,0,0,0,231,2133,0,1981,232,0,151,0,2091,2405,1,36,1126,0,414,0,870,382,0,949,1493,0,591,0,491,74,0,783,2330,1,1996,0,139,2330,0,1279,2392,0,1312,0,1134,1191,0,1794,1386,0,1570,0,2210,1909,0,411,2026,0,1500] >;

C2×C29⋊C7 in GAP, Magma, Sage, TeX

C_2\times C_{29}\rtimes C_7
% in TeX

G:=Group("C2xC29:C7");
// GroupNames label

G:=SmallGroup(406,2);
// by ID

G=gap.SmallGroup(406,2);
# by ID

G:=PCGroup([3,-2,-7,-29,1013]);
// Polycyclic

G:=Group<a,b,c|a^2=b^29=c^7=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^20>;
// generators/relations

Export

Subgroup lattice of C2×C29⋊C7 in TeX
Character table of C2×C29⋊C7 in TeX

׿
×
𝔽