direct product, metacyclic, supersoluble, monomial, Z-group, 7-hyperelementary
Aliases: C2×C29⋊C7, C58⋊C7, C29⋊2C14, SmallGroup(406,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C29 — C29⋊C7 — C2×C29⋊C7 |
C29 — C2×C29⋊C7 |
Generators and relations for C2×C29⋊C7
G = < a,b,c | a2=b29=c7=1, ab=ba, ac=ca, cbc-1=b20 >
Character table of C2×C29⋊C7
class | 1 | 2 | 7A | 7B | 7C | 7D | 7E | 7F | 14A | 14B | 14C | 14D | 14E | 14F | 29A | 29B | 29C | 29D | 58A | 58B | 58C | 58D | |
size | 1 | 1 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | -ζ74 | -ζ73 | -ζ76 | -ζ72 | -ζ75 | -ζ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 14 |
ρ4 | 1 | -1 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | -ζ7 | -ζ76 | -ζ75 | -ζ74 | -ζ73 | -ζ72 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 14 |
ρ5 | 1 | -1 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | -ζ75 | -ζ72 | -ζ74 | -ζ76 | -ζ7 | -ζ73 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 14 |
ρ6 | 1 | -1 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | -ζ72 | -ζ75 | -ζ73 | -ζ7 | -ζ76 | -ζ74 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 14 |
ρ7 | 1 | 1 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ8 | 1 | 1 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ9 | 1 | -1 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | -ζ76 | -ζ7 | -ζ72 | -ζ73 | -ζ74 | -ζ75 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 14 |
ρ10 | 1 | 1 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ11 | 1 | 1 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ12 | 1 | -1 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | -ζ73 | -ζ74 | -ζ7 | -ζ75 | -ζ72 | -ζ76 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 14 |
ρ13 | 1 | 1 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ14 | 1 | 1 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ15 | 7 | -7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | -ζ2925-ζ2924-ζ2923-ζ2920-ζ2916-ζ297-ζ29 | -ζ2921-ζ2919-ζ2917-ζ2914-ζ2911-ζ293-ζ292 | -ζ2928-ζ2922-ζ2913-ζ299-ζ296-ζ295-ζ294 | -ζ2927-ζ2926-ζ2918-ζ2915-ζ2912-ζ2910-ζ298 | complex faithful |
ρ16 | 7 | -7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | -ζ2921-ζ2919-ζ2917-ζ2914-ζ2911-ζ293-ζ292 | -ζ2928-ζ2922-ζ2913-ζ299-ζ296-ζ295-ζ294 | -ζ2927-ζ2926-ζ2918-ζ2915-ζ2912-ζ2910-ζ298 | -ζ2925-ζ2924-ζ2923-ζ2920-ζ2916-ζ297-ζ29 | complex faithful |
ρ17 | 7 | -7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | -ζ2928-ζ2922-ζ2913-ζ299-ζ296-ζ295-ζ294 | -ζ2927-ζ2926-ζ2918-ζ2915-ζ2912-ζ2910-ζ298 | -ζ2925-ζ2924-ζ2923-ζ2920-ζ2916-ζ297-ζ29 | -ζ2921-ζ2919-ζ2917-ζ2914-ζ2911-ζ293-ζ292 | complex faithful |
ρ18 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | complex lifted from C29⋊C7 |
ρ19 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | complex lifted from C29⋊C7 |
ρ20 | 7 | -7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | -ζ2927-ζ2926-ζ2918-ζ2915-ζ2912-ζ2910-ζ298 | -ζ2925-ζ2924-ζ2923-ζ2920-ζ2916-ζ297-ζ29 | -ζ2921-ζ2919-ζ2917-ζ2914-ζ2911-ζ293-ζ292 | -ζ2928-ζ2922-ζ2913-ζ299-ζ296-ζ295-ζ294 | complex faithful |
ρ21 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | complex lifted from C29⋊C7 |
ρ22 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2927+ζ2926+ζ2918+ζ2915+ζ2912+ζ2910+ζ298 | ζ2925+ζ2924+ζ2923+ζ2920+ζ2916+ζ297+ζ29 | ζ2921+ζ2919+ζ2917+ζ2914+ζ2911+ζ293+ζ292 | ζ2928+ζ2922+ζ2913+ζ299+ζ296+ζ295+ζ294 | complex lifted from C29⋊C7 |
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)
(2 17 25 8 26 24 21)(3 4 20 15 22 18 12)(5 7 10 29 14 6 23)(9 13 19 28 27 11 16)(31 46 54 37 55 53 50)(32 33 49 44 51 47 41)(34 36 39 58 43 35 52)(38 42 48 57 56 40 45)
G:=sub<Sym(58)| (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,17,25,8,26,24,21)(3,4,20,15,22,18,12)(5,7,10,29,14,6,23)(9,13,19,28,27,11,16)(31,46,54,37,55,53,50)(32,33,49,44,51,47,41)(34,36,39,58,43,35,52)(38,42,48,57,56,40,45)>;
G:=Group( (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,17,25,8,26,24,21)(3,4,20,15,22,18,12)(5,7,10,29,14,6,23)(9,13,19,28,27,11,16)(31,46,54,37,55,53,50)(32,33,49,44,51,47,41)(34,36,39,58,43,35,52)(38,42,48,57,56,40,45) );
G=PermutationGroup([[(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)], [(2,17,25,8,26,24,21),(3,4,20,15,22,18,12),(5,7,10,29,14,6,23),(9,13,19,28,27,11,16),(31,46,54,37,55,53,50),(32,33,49,44,51,47,41),(34,36,39,58,43,35,52),(38,42,48,57,56,40,45)]])
Matrix representation of C2×C29⋊C7 ►in GL8(𝔽2437)
2436 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 485 | 744 | 1424 | 1281 | 1950 | 2174 | 1 |
0 | 486 | 744 | 1424 | 1281 | 1950 | 2174 | 1 |
0 | 485 | 745 | 1424 | 1281 | 1950 | 2174 | 1 |
0 | 485 | 744 | 1425 | 1281 | 1950 | 2174 | 1 |
0 | 485 | 744 | 1424 | 1282 | 1950 | 2174 | 1 |
0 | 485 | 744 | 1424 | 1281 | 1951 | 2174 | 1 |
0 | 485 | 744 | 1424 | 1281 | 1950 | 2175 | 1 |
492 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 231 | 2091 | 870 | 491 | 139 | 1134 | 2210 |
0 | 2133 | 2405 | 382 | 74 | 2330 | 1191 | 1909 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1981 | 36 | 949 | 783 | 1279 | 1794 | 411 |
0 | 232 | 1126 | 1493 | 2330 | 2392 | 1386 | 2026 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 151 | 414 | 591 | 1996 | 1312 | 1570 | 1500 |
G:=sub<GL(8,GF(2437))| [2436,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,485,486,485,485,485,485,485,0,744,744,745,744,744,744,744,0,1424,1424,1424,1425,1424,1424,1424,0,1281,1281,1281,1281,1282,1281,1281,0,1950,1950,1950,1950,1950,1951,1950,0,2174,2174,2174,2174,2174,2174,2175,0,1,1,1,1,1,1,1],[492,0,0,0,0,0,0,0,0,231,2133,0,1981,232,0,151,0,2091,2405,1,36,1126,0,414,0,870,382,0,949,1493,0,591,0,491,74,0,783,2330,1,1996,0,139,2330,0,1279,2392,0,1312,0,1134,1191,0,1794,1386,0,1570,0,2210,1909,0,411,2026,0,1500] >;
C2×C29⋊C7 in GAP, Magma, Sage, TeX
C_2\times C_{29}\rtimes C_7
% in TeX
G:=Group("C2xC29:C7");
// GroupNames label
G:=SmallGroup(406,2);
// by ID
G=gap.SmallGroup(406,2);
# by ID
G:=PCGroup([3,-2,-7,-29,1013]);
// Polycyclic
G:=Group<a,b,c|a^2=b^29=c^7=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^20>;
// generators/relations
Export
Subgroup lattice of C2×C29⋊C7 in TeX
Character table of C2×C29⋊C7 in TeX