direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C52⋊C4, D26.4Q8, D26.11D4, D26.10C23, C26⋊(C4⋊C4), D13⋊(C4⋊C4), C52⋊2(C2×C4), (C2×C52)⋊3C4, (C4×D13)⋊4C4, D13.1(C2×D4), D13.1(C2×Q8), (C2×Dic13)⋊8C4, Dic13⋊7(C2×C4), D26.16(C2×C4), C26.5(C22×C4), (C4×D13).30C22, (C22×D13).37C22, C13⋊(C2×C4⋊C4), C4⋊2(C2×C13⋊C4), (C2×C4)⋊3(C13⋊C4), (C2×C4×D13).14C2, C2.6(C22×C13⋊C4), (C2×C26).17(C2×C4), (C2×C13⋊C4).1C22, (C22×C13⋊C4).2C2, C22.18(C2×C13⋊C4), SmallGroup(416,203)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — D13 — D26 — C2×C13⋊C4 — C22×C13⋊C4 — C2×C52⋊C4 |
Generators and relations for C2×C52⋊C4
G = < a,b,c | a2=b52=c4=1, ab=ba, ac=ca, cbc-1=b31 >
Subgroups: 660 in 92 conjugacy classes, 46 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C13, C4⋊C4, C22×C4, D13, D13, C26, C26, C2×C4⋊C4, Dic13, C52, C13⋊C4, D26, D26, C2×C26, C4×D13, C2×Dic13, C2×C52, C2×C13⋊C4, C2×C13⋊C4, C22×D13, C52⋊C4, C2×C4×D13, C22×C13⋊C4, C2×C52⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C4⋊C4, C13⋊C4, C2×C13⋊C4, C52⋊C4, C22×C13⋊C4, C2×C52⋊C4
(1 80)(2 81)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 100)(22 101)(23 102)(24 103)(25 104)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 93)(2 88 26 72)(3 83 51 103)(4 78 24 82)(5 73 49 61)(6 68 22 92)(7 63 47 71)(8 58 20 102)(9 53 45 81)(10 100 18 60)(11 95 43 91)(12 90 16 70)(13 85 41 101)(14 80)(15 75 39 59)(17 65 37 69)(19 55 35 79)(21 97 33 89)(23 87 31 99)(25 77 29 57)(27 67)(28 62 52 98)(30 104 50 56)(32 94 48 66)(34 84 46 76)(36 74 44 86)(38 64 42 96)(40 54)
G:=sub<Sym(104)| (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,93)(2,88,26,72)(3,83,51,103)(4,78,24,82)(5,73,49,61)(6,68,22,92)(7,63,47,71)(8,58,20,102)(9,53,45,81)(10,100,18,60)(11,95,43,91)(12,90,16,70)(13,85,41,101)(14,80)(15,75,39,59)(17,65,37,69)(19,55,35,79)(21,97,33,89)(23,87,31,99)(25,77,29,57)(27,67)(28,62,52,98)(30,104,50,56)(32,94,48,66)(34,84,46,76)(36,74,44,86)(38,64,42,96)(40,54)>;
G:=Group( (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,93)(2,88,26,72)(3,83,51,103)(4,78,24,82)(5,73,49,61)(6,68,22,92)(7,63,47,71)(8,58,20,102)(9,53,45,81)(10,100,18,60)(11,95,43,91)(12,90,16,70)(13,85,41,101)(14,80)(15,75,39,59)(17,65,37,69)(19,55,35,79)(21,97,33,89)(23,87,31,99)(25,77,29,57)(27,67)(28,62,52,98)(30,104,50,56)(32,94,48,66)(34,84,46,76)(36,74,44,86)(38,64,42,96)(40,54) );
G=PermutationGroup([[(1,80),(2,81),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,100),(22,101),(23,102),(24,103),(25,104),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,93),(2,88,26,72),(3,83,51,103),(4,78,24,82),(5,73,49,61),(6,68,22,92),(7,63,47,71),(8,58,20,102),(9,53,45,81),(10,100,18,60),(11,95,43,91),(12,90,16,70),(13,85,41,101),(14,80),(15,75,39,59),(17,65,37,69),(19,55,35,79),(21,97,33,89),(23,87,31,99),(25,77,29,57),(27,67),(28,62,52,98),(30,104,50,56),(32,94,48,66),(34,84,46,76),(36,74,44,86),(38,64,42,96),(40,54)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | ··· | 4L | 13A | 13B | 13C | 26A | ··· | 26I | 52A | ··· | 52L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 13 | 13 | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 1 | 1 | 13 | 13 | 13 | 13 | 2 | 2 | 26 | ··· | 26 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | C13⋊C4 | C2×C13⋊C4 | C2×C13⋊C4 | C52⋊C4 |
kernel | C2×C52⋊C4 | C52⋊C4 | C2×C4×D13 | C22×C13⋊C4 | C4×D13 | C2×Dic13 | C2×C52 | D26 | D26 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 4 | 2 | 2 | 2 | 2 | 3 | 6 | 3 | 12 |
Matrix representation of C2×C52⋊C4 ►in GL6(𝔽53)
52 | 0 | 0 | 0 | 0 | 0 |
0 | 52 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
42 | 13 | 0 | 0 | 0 | 0 |
11 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 37 | 32 | 16 |
0 | 0 | 17 | 52 | 47 | 52 |
0 | 0 | 24 | 46 | 39 | 23 |
0 | 0 | 1 | 33 | 0 | 21 |
12 | 34 | 0 | 0 | 0 | 0 |
16 | 41 | 0 | 0 | 0 | 0 |
0 | 0 | 52 | 38 | 15 | 1 |
0 | 0 | 32 | 4 | 45 | 30 |
0 | 0 | 41 | 28 | 18 | 28 |
0 | 0 | 15 | 4 | 9 | 32 |
G:=sub<GL(6,GF(53))| [52,0,0,0,0,0,0,52,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[42,11,0,0,0,0,13,11,0,0,0,0,0,0,46,17,24,1,0,0,37,52,46,33,0,0,32,47,39,0,0,0,16,52,23,21],[12,16,0,0,0,0,34,41,0,0,0,0,0,0,52,32,41,15,0,0,38,4,28,4,0,0,15,45,18,9,0,0,1,30,28,32] >;
C2×C52⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_{52}\rtimes C_4
% in TeX
G:=Group("C2xC52:C4");
// GroupNames label
G:=SmallGroup(416,203);
// by ID
G=gap.SmallGroup(416,203);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,362,86,9221,1751]);
// Polycyclic
G:=Group<a,b,c|a^2=b^52=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^31>;
// generators/relations