Copied to
clipboard

G = C2×C52⋊C4order 416 = 25·13

Direct product of C2 and C52⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C52⋊C4, D26.4Q8, D26.11D4, D26.10C23, C26⋊(C4⋊C4), D13⋊(C4⋊C4), C522(C2×C4), (C2×C52)⋊3C4, (C4×D13)⋊4C4, D13.1(C2×D4), D13.1(C2×Q8), (C2×Dic13)⋊8C4, Dic137(C2×C4), D26.16(C2×C4), C26.5(C22×C4), (C4×D13).30C22, (C22×D13).37C22, C13⋊(C2×C4⋊C4), C42(C2×C13⋊C4), (C2×C4)⋊3(C13⋊C4), (C2×C4×D13).14C2, C2.6(C22×C13⋊C4), (C2×C26).17(C2×C4), (C2×C13⋊C4).1C22, (C22×C13⋊C4).2C2, C22.18(C2×C13⋊C4), SmallGroup(416,203)

Series: Derived Chief Lower central Upper central

C1C26 — C2×C52⋊C4
C1C13D13D26C2×C13⋊C4C22×C13⋊C4 — C2×C52⋊C4
C13C26 — C2×C52⋊C4
C1C22C2×C4

Generators and relations for C2×C52⋊C4
 G = < a,b,c | a2=b52=c4=1, ab=ba, ac=ca, cbc-1=b31 >

Subgroups: 660 in 92 conjugacy classes, 46 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C13, C4⋊C4, C22×C4, D13, D13, C26, C26, C2×C4⋊C4, Dic13, C52, C13⋊C4, D26, D26, C2×C26, C4×D13, C2×Dic13, C2×C52, C2×C13⋊C4, C2×C13⋊C4, C22×D13, C52⋊C4, C2×C4×D13, C22×C13⋊C4, C2×C52⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C4⋊C4, C13⋊C4, C2×C13⋊C4, C52⋊C4, C22×C13⋊C4, C2×C52⋊C4

Smallest permutation representation of C2×C52⋊C4
On 104 points
Generators in S104
(1 80)(2 81)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 100)(22 101)(23 102)(24 103)(25 104)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 93)(2 88 26 72)(3 83 51 103)(4 78 24 82)(5 73 49 61)(6 68 22 92)(7 63 47 71)(8 58 20 102)(9 53 45 81)(10 100 18 60)(11 95 43 91)(12 90 16 70)(13 85 41 101)(14 80)(15 75 39 59)(17 65 37 69)(19 55 35 79)(21 97 33 89)(23 87 31 99)(25 77 29 57)(27 67)(28 62 52 98)(30 104 50 56)(32 94 48 66)(34 84 46 76)(36 74 44 86)(38 64 42 96)(40 54)

G:=sub<Sym(104)| (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,93)(2,88,26,72)(3,83,51,103)(4,78,24,82)(5,73,49,61)(6,68,22,92)(7,63,47,71)(8,58,20,102)(9,53,45,81)(10,100,18,60)(11,95,43,91)(12,90,16,70)(13,85,41,101)(14,80)(15,75,39,59)(17,65,37,69)(19,55,35,79)(21,97,33,89)(23,87,31,99)(25,77,29,57)(27,67)(28,62,52,98)(30,104,50,56)(32,94,48,66)(34,84,46,76)(36,74,44,86)(38,64,42,96)(40,54)>;

G:=Group( (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,93)(2,88,26,72)(3,83,51,103)(4,78,24,82)(5,73,49,61)(6,68,22,92)(7,63,47,71)(8,58,20,102)(9,53,45,81)(10,100,18,60)(11,95,43,91)(12,90,16,70)(13,85,41,101)(14,80)(15,75,39,59)(17,65,37,69)(19,55,35,79)(21,97,33,89)(23,87,31,99)(25,77,29,57)(27,67)(28,62,52,98)(30,104,50,56)(32,94,48,66)(34,84,46,76)(36,74,44,86)(38,64,42,96)(40,54) );

G=PermutationGroup([[(1,80),(2,81),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,100),(22,101),(23,102),(24,103),(25,104),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,93),(2,88,26,72),(3,83,51,103),(4,78,24,82),(5,73,49,61),(6,68,22,92),(7,63,47,71),(8,58,20,102),(9,53,45,81),(10,100,18,60),(11,95,43,91),(12,90,16,70),(13,85,41,101),(14,80),(15,75,39,59),(17,65,37,69),(19,55,35,79),(21,97,33,89),(23,87,31,99),(25,77,29,57),(27,67),(28,62,52,98),(30,104,50,56),(32,94,48,66),(34,84,46,76),(36,74,44,86),(38,64,42,96),(40,54)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4L13A13B13C26A···26I52A···52L
order12222222444···413131326···2652···52
size1111131313132226···264444···44···4

44 irreducible representations

dim1111111224444
type+++++-+++
imageC1C2C2C2C4C4C4D4Q8C13⋊C4C2×C13⋊C4C2×C13⋊C4C52⋊C4
kernelC2×C52⋊C4C52⋊C4C2×C4×D13C22×C13⋊C4C4×D13C2×Dic13C2×C52D26D26C2×C4C4C22C2
# reps14124222236312

Matrix representation of C2×C52⋊C4 in GL6(𝔽53)

5200000
0520000
001000
000100
000010
000001
,
42130000
11110000
0046373216
0017524752
0024463923
00133021
,
12340000
16410000
005238151
003244530
0041281828
00154932

G:=sub<GL(6,GF(53))| [52,0,0,0,0,0,0,52,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[42,11,0,0,0,0,13,11,0,0,0,0,0,0,46,17,24,1,0,0,37,52,46,33,0,0,32,47,39,0,0,0,16,52,23,21],[12,16,0,0,0,0,34,41,0,0,0,0,0,0,52,32,41,15,0,0,38,4,28,4,0,0,15,45,18,9,0,0,1,30,28,32] >;

C2×C52⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{52}\rtimes C_4
% in TeX

G:=Group("C2xC52:C4");
// GroupNames label

G:=SmallGroup(416,203);
// by ID

G=gap.SmallGroup(416,203);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,362,86,9221,1751]);
// Polycyclic

G:=Group<a,b,c|a^2=b^52=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^31>;
// generators/relations

׿
×
𝔽