metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D207, C9⋊D23, C23⋊D9, C3.D69, C207⋊1C2, C69.1S3, sometimes denoted D414 or Dih207 or Dih414, SmallGroup(414,3)
Series: Derived ►Chief ►Lower central ►Upper central
| C207 — D207 |
Generators and relations for D207
G = < a,b | a207=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207)
(2 207)(3 206)(4 205)(5 204)(6 203)(7 202)(8 201)(9 200)(10 199)(11 198)(12 197)(13 196)(14 195)(15 194)(16 193)(17 192)(18 191)(19 190)(20 189)(21 188)(22 187)(23 186)(24 185)(25 184)(26 183)(27 182)(28 181)(29 180)(30 179)(31 178)(32 177)(33 176)(34 175)(35 174)(36 173)(37 172)(38 171)(39 170)(40 169)(41 168)(42 167)(43 166)(44 165)(45 164)(46 163)(47 162)(48 161)(49 160)(50 159)(51 158)(52 157)(53 156)(54 155)(55 154)(56 153)(57 152)(58 151)(59 150)(60 149)(61 148)(62 147)(63 146)(64 145)(65 144)(66 143)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 132)(78 131)(79 130)(80 129)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)(89 120)(90 119)(91 118)(92 117)(93 116)(94 115)(95 114)(96 113)(97 112)(98 111)(99 110)(100 109)(101 108)(102 107)(103 106)(104 105)
G:=sub<Sym(207)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207), (2,207)(3,206)(4,205)(5,204)(6,203)(7,202)(8,201)(9,200)(10,199)(11,198)(12,197)(13,196)(14,195)(15,194)(16,193)(17,192)(18,191)(19,190)(20,189)(21,188)(22,187)(23,186)(24,185)(25,184)(26,183)(27,182)(28,181)(29,180)(30,179)(31,178)(32,177)(33,176)(34,175)(35,174)(36,173)(37,172)(38,171)(39,170)(40,169)(41,168)(42,167)(43,166)(44,165)(45,164)(46,163)(47,162)(48,161)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207), (2,207)(3,206)(4,205)(5,204)(6,203)(7,202)(8,201)(9,200)(10,199)(11,198)(12,197)(13,196)(14,195)(15,194)(16,193)(17,192)(18,191)(19,190)(20,189)(21,188)(22,187)(23,186)(24,185)(25,184)(26,183)(27,182)(28,181)(29,180)(30,179)(31,178)(32,177)(33,176)(34,175)(35,174)(36,173)(37,172)(38,171)(39,170)(40,169)(41,168)(42,167)(43,166)(44,165)(45,164)(46,163)(47,162)(48,161)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207)], [(2,207),(3,206),(4,205),(5,204),(6,203),(7,202),(8,201),(9,200),(10,199),(11,198),(12,197),(13,196),(14,195),(15,194),(16,193),(17,192),(18,191),(19,190),(20,189),(21,188),(22,187),(23,186),(24,185),(25,184),(26,183),(27,182),(28,181),(29,180),(30,179),(31,178),(32,177),(33,176),(34,175),(35,174),(36,173),(37,172),(38,171),(39,170),(40,169),(41,168),(42,167),(43,166),(44,165),(45,164),(46,163),(47,162),(48,161),(49,160),(50,159),(51,158),(52,157),(53,156),(54,155),(55,154),(56,153),(57,152),(58,151),(59,150),(60,149),(61,148),(62,147),(63,146),(64,145),(65,144),(66,143),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,132),(78,131),(79,130),(80,129),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121),(89,120),(90,119),(91,118),(92,117),(93,116),(94,115),(95,114),(96,113),(97,112),(98,111),(99,110),(100,109),(101,108),(102,107),(103,106),(104,105)]])
105 conjugacy classes
| class | 1 | 2 | 3 | 9A | 9B | 9C | 23A | ··· | 23K | 69A | ··· | 69V | 207A | ··· | 207BN |
| order | 1 | 2 | 3 | 9 | 9 | 9 | 23 | ··· | 23 | 69 | ··· | 69 | 207 | ··· | 207 |
| size | 1 | 207 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
105 irreducible representations
| dim | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + |
| image | C1 | C2 | S3 | D9 | D23 | D69 | D207 |
| kernel | D207 | C207 | C69 | C23 | C9 | C3 | C1 |
| # reps | 1 | 1 | 1 | 3 | 11 | 22 | 66 |
Matrix representation of D207 ►in GL2(𝔽829) generated by
| 315 | 116 |
| 713 | 431 |
| 0 | 1 |
| 1 | 0 |
G:=sub<GL(2,GF(829))| [315,713,116,431],[0,1,1,0] >;
D207 in GAP, Magma, Sage, TeX
D_{207} % in TeX
G:=Group("D207"); // GroupNames label
G:=SmallGroup(414,3);
// by ID
G=gap.SmallGroup(414,3);
# by ID
G:=PCGroup([4,-2,-3,-23,-3,1137,1109,1586,4419]);
// Polycyclic
G:=Group<a,b|a^207=b^2=1,b*a*b=a^-1>;
// generators/relations
Export