Extensions 1→N→G→Q→1 with N=C6×D17 and Q=C2

Direct product G=N×Q with N=C6×D17 and Q=C2
dρLabelID
C2×C6×D17204C2xC6xD17408,43

Semidirect products G=N:Q with N=C6×D17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D17)⋊1C2 = C51⋊D4φ: C2/C1C2 ⊆ Out C6×D172044-(C6xD17):1C2408,10
(C6×D17)⋊2C2 = C3⋊D68φ: C2/C1C2 ⊆ Out C6×D172044+(C6xD17):2C2408,11
(C6×D17)⋊3C2 = C2×S3×D17φ: C2/C1C2 ⊆ Out C6×D171024+(C6xD17):3C2408,41
(C6×D17)⋊4C2 = C3×D68φ: C2/C1C2 ⊆ Out C6×D172042(C6xD17):4C2408,17
(C6×D17)⋊5C2 = C3×C17⋊D4φ: C2/C1C2 ⊆ Out C6×D172042(C6xD17):5C2408,19

Non-split extensions G=N.Q with N=C6×D17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D17).1C2 = Dic3×D17φ: C2/C1C2 ⊆ Out C6×D172044-(C6xD17).1C2408,7
(C6×D17).2C2 = C2×C51⋊C4φ: C2/C1C2 ⊆ Out C6×D171024(C6xD17).2C2408,40
(C6×D17).3C2 = C6×C17⋊C4φ: C2/C1C2 ⊆ Out C6×D171024(C6xD17).3C2408,39
(C6×D17).4C2 = C12×D17φ: trivial image2042(C6xD17).4C2408,16

׿
×
𝔽