Copied to
clipboard

G = C6xD17order 204 = 22·3·17

Direct product of C6 and D17

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C6xD17, C34:C6, C102:2C2, C51:3C22, C17:(C2xC6), SmallGroup(204,9)

Series: Derived Chief Lower central Upper central

C1C17 — C6xD17
C1C17C51C3xD17 — C6xD17
C17 — C6xD17
C1C6

Generators and relations for C6xD17
 G = < a,b,c | a6=b17=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 116 in 20 conjugacy classes, 14 normal (10 characteristic)
Quotients: C1, C2, C3, C22, C6, C2xC6, D17, D34, C3xD17, C6xD17
17C2
17C2
17C22
17C6
17C6
17C2xC6

Smallest permutation representation of C6xD17
On 102 points
Generators in S102
(1 84 47 54 33 92)(2 85 48 55 34 93)(3 69 49 56 18 94)(4 70 50 57 19 95)(5 71 51 58 20 96)(6 72 35 59 21 97)(7 73 36 60 22 98)(8 74 37 61 23 99)(9 75 38 62 24 100)(10 76 39 63 25 101)(11 77 40 64 26 102)(12 78 41 65 27 86)(13 79 42 66 28 87)(14 80 43 67 29 88)(15 81 44 68 30 89)(16 82 45 52 31 90)(17 83 46 53 32 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)
(1 53)(2 52)(3 68)(4 67)(5 66)(6 65)(7 64)(8 63)(9 62)(10 61)(11 60)(12 59)(13 58)(14 57)(15 56)(16 55)(17 54)(18 81)(19 80)(20 79)(21 78)(22 77)(23 76)(24 75)(25 74)(26 73)(27 72)(28 71)(29 70)(30 69)(31 85)(32 84)(33 83)(34 82)(35 86)(36 102)(37 101)(38 100)(39 99)(40 98)(41 97)(42 96)(43 95)(44 94)(45 93)(46 92)(47 91)(48 90)(49 89)(50 88)(51 87)

G:=sub<Sym(102)| (1,84,47,54,33,92)(2,85,48,55,34,93)(3,69,49,56,18,94)(4,70,50,57,19,95)(5,71,51,58,20,96)(6,72,35,59,21,97)(7,73,36,60,22,98)(8,74,37,61,23,99)(9,75,38,62,24,100)(10,76,39,63,25,101)(11,77,40,64,26,102)(12,78,41,65,27,86)(13,79,42,66,28,87)(14,80,43,67,29,88)(15,81,44,68,30,89)(16,82,45,52,31,90)(17,83,46,53,32,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,53)(2,52)(3,68)(4,67)(5,66)(6,65)(7,64)(8,63)(9,62)(10,61)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,70)(30,69)(31,85)(32,84)(33,83)(34,82)(35,86)(36,102)(37,101)(38,100)(39,99)(40,98)(41,97)(42,96)(43,95)(44,94)(45,93)(46,92)(47,91)(48,90)(49,89)(50,88)(51,87)>;

G:=Group( (1,84,47,54,33,92)(2,85,48,55,34,93)(3,69,49,56,18,94)(4,70,50,57,19,95)(5,71,51,58,20,96)(6,72,35,59,21,97)(7,73,36,60,22,98)(8,74,37,61,23,99)(9,75,38,62,24,100)(10,76,39,63,25,101)(11,77,40,64,26,102)(12,78,41,65,27,86)(13,79,42,66,28,87)(14,80,43,67,29,88)(15,81,44,68,30,89)(16,82,45,52,31,90)(17,83,46,53,32,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,53)(2,52)(3,68)(4,67)(5,66)(6,65)(7,64)(8,63)(9,62)(10,61)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,70)(30,69)(31,85)(32,84)(33,83)(34,82)(35,86)(36,102)(37,101)(38,100)(39,99)(40,98)(41,97)(42,96)(43,95)(44,94)(45,93)(46,92)(47,91)(48,90)(49,89)(50,88)(51,87) );

G=PermutationGroup([[(1,84,47,54,33,92),(2,85,48,55,34,93),(3,69,49,56,18,94),(4,70,50,57,19,95),(5,71,51,58,20,96),(6,72,35,59,21,97),(7,73,36,60,22,98),(8,74,37,61,23,99),(9,75,38,62,24,100),(10,76,39,63,25,101),(11,77,40,64,26,102),(12,78,41,65,27,86),(13,79,42,66,28,87),(14,80,43,67,29,88),(15,81,44,68,30,89),(16,82,45,52,31,90),(17,83,46,53,32,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)], [(1,53),(2,52),(3,68),(4,67),(5,66),(6,65),(7,64),(8,63),(9,62),(10,61),(11,60),(12,59),(13,58),(14,57),(15,56),(16,55),(17,54),(18,81),(19,80),(20,79),(21,78),(22,77),(23,76),(24,75),(25,74),(26,73),(27,72),(28,71),(29,70),(30,69),(31,85),(32,84),(33,83),(34,82),(35,86),(36,102),(37,101),(38,100),(39,99),(40,98),(41,97),(42,96),(43,95),(44,94),(45,93),(46,92),(47,91),(48,90),(49,89),(50,88),(51,87)]])

C6xD17 is a maximal subgroup of   C51:D4  C3:D68

60 conjugacy classes

class 1 2A2B2C3A3B6A6B6C6D6E6F17A···17H34A···34H51A···51P102A···102P
order12223366666617···1734···3451···51102···102
size1117171111171717172···22···22···22···2

60 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6D17D34C3xD17C6xD17
kernelC6xD17C3xD17C102D34D17C34C6C3C2C1
# reps121242881616

Matrix representation of C6xD17 in GL3(F103) generated by

10200
0460
0046
,
100
0971
06840
,
100
040102
05463
G:=sub<GL(3,GF(103))| [102,0,0,0,46,0,0,0,46],[1,0,0,0,97,68,0,1,40],[1,0,0,0,40,54,0,102,63] >;

C6xD17 in GAP, Magma, Sage, TeX

C_6\times D_{17}
% in TeX

G:=Group("C6xD17");
// GroupNames label

G:=SmallGroup(204,9);
// by ID

G=gap.SmallGroup(204,9);
# by ID

G:=PCGroup([4,-2,-2,-3,-17,3075]);
// Polycyclic

G:=Group<a,b,c|a^6=b^17=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C6xD17 in TeX

׿
x
:
Z
F
o
wr
Q
<