Extensions 1→N→G→Q→1 with N=S3×C34 and Q=C2

Direct product G=N×Q with N=S3×C34 and Q=C2
dρLabelID
S3×C2×C34204S3xC2xC34408,44

Semidirect products G=N:Q with N=S3×C34 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C34)⋊1C2 = C51⋊D4φ: C2/C1C2 ⊆ Out S3×C342044-(S3xC34):1C2408,10
(S3×C34)⋊2C2 = C17⋊D12φ: C2/C1C2 ⊆ Out S3×C342044+(S3xC34):2C2408,12
(S3×C34)⋊3C2 = C2×S3×D17φ: C2/C1C2 ⊆ Out S3×C341024+(S3xC34):3C2408,41
(S3×C34)⋊4C2 = C17×D12φ: C2/C1C2 ⊆ Out S3×C342042(S3xC34):4C2408,22
(S3×C34)⋊5C2 = C17×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C342042(S3xC34):5C2408,24

Non-split extensions G=N.Q with N=S3×C34 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C34).C2 = S3×Dic17φ: C2/C1C2 ⊆ Out S3×C342044-(S3xC34).C2408,8
(S3×C34).2C2 = S3×C68φ: trivial image2042(S3xC34).2C2408,21

׿
×
𝔽