Copied to
clipboard

G = S3xC34order 204 = 22·3·17

Direct product of C34 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3xC34, C6:C34, C102:3C2, C51:4C22, C3:(C2xC34), SmallGroup(204,10)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC34
C1C3C51S3xC17 — S3xC34
C3 — S3xC34
C1C34

Generators and relations for S3xC34
 G = < a,b,c | a34=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 32 in 20 conjugacy classes, 14 normal (10 characteristic)
Quotients: C1, C2, C22, S3, D6, C17, C34, C2xC34, S3xC17, S3xC34
3C2
3C2
3C22
3C34
3C34
3C2xC34

Smallest permutation representation of S3xC34
On 102 points
Generators in S102
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)
(1 62 74)(2 63 75)(3 64 76)(4 65 77)(5 66 78)(6 67 79)(7 68 80)(8 35 81)(9 36 82)(10 37 83)(11 38 84)(12 39 85)(13 40 86)(14 41 87)(15 42 88)(16 43 89)(17 44 90)(18 45 91)(19 46 92)(20 47 93)(21 48 94)(22 49 95)(23 50 96)(24 51 97)(25 52 98)(26 53 99)(27 54 100)(28 55 101)(29 56 102)(30 57 69)(31 58 70)(32 59 71)(33 60 72)(34 61 73)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(35 98)(36 99)(37 100)(38 101)(39 102)(40 69)(41 70)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 78)(50 79)(51 80)(52 81)(53 82)(54 83)(55 84)(56 85)(57 86)(58 87)(59 88)(60 89)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 97)

G:=sub<Sym(102)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,62,74)(2,63,75)(3,64,76)(4,65,77)(5,66,78)(6,67,79)(7,68,80)(8,35,81)(9,36,82)(10,37,83)(11,38,84)(12,39,85)(13,40,86)(14,41,87)(15,42,88)(16,43,89)(17,44,90)(18,45,91)(19,46,92)(20,47,93)(21,48,94)(22,49,95)(23,50,96)(24,51,97)(25,52,98)(26,53,99)(27,54,100)(28,55,101)(29,56,102)(30,57,69)(31,58,70)(32,59,71)(33,60,72)(34,61,73), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,98)(36,99)(37,100)(38,101)(39,102)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,81)(53,82)(54,83)(55,84)(56,85)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,62,74)(2,63,75)(3,64,76)(4,65,77)(5,66,78)(6,67,79)(7,68,80)(8,35,81)(9,36,82)(10,37,83)(11,38,84)(12,39,85)(13,40,86)(14,41,87)(15,42,88)(16,43,89)(17,44,90)(18,45,91)(19,46,92)(20,47,93)(21,48,94)(22,49,95)(23,50,96)(24,51,97)(25,52,98)(26,53,99)(27,54,100)(28,55,101)(29,56,102)(30,57,69)(31,58,70)(32,59,71)(33,60,72)(34,61,73), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,98)(36,99)(37,100)(38,101)(39,102)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,81)(53,82)(54,83)(55,84)(56,85)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)], [(1,62,74),(2,63,75),(3,64,76),(4,65,77),(5,66,78),(6,67,79),(7,68,80),(8,35,81),(9,36,82),(10,37,83),(11,38,84),(12,39,85),(13,40,86),(14,41,87),(15,42,88),(16,43,89),(17,44,90),(18,45,91),(19,46,92),(20,47,93),(21,48,94),(22,49,95),(23,50,96),(24,51,97),(25,52,98),(26,53,99),(27,54,100),(28,55,101),(29,56,102),(30,57,69),(31,58,70),(32,59,71),(33,60,72),(34,61,73)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(35,98),(36,99),(37,100),(38,101),(39,102),(40,69),(41,70),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,78),(50,79),(51,80),(52,81),(53,82),(54,83),(55,84),(56,85),(57,86),(58,87),(59,88),(60,89),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,97)]])

S3xC34 is a maximal subgroup of   C51:D4  C17:D12

102 conjugacy classes

class 1 2A2B2C 3  6 17A···17P34A···34P34Q···34AV51A···51P102A···102P
order12223617···1734···3434···3451···51102···102
size1133221···11···13···32···22···2

102 irreducible representations

dim1111112222
type+++++
imageC1C2C2C17C34C34S3D6S3xC17S3xC34
kernelS3xC34S3xC17C102D6S3C6C34C17C2C1
# reps121163216111616

Matrix representation of S3xC34 in GL2(F103) generated by

420
042
,
0102
1102
,
1021
01
G:=sub<GL(2,GF(103))| [42,0,0,42],[0,1,102,102],[102,0,1,1] >;

S3xC34 in GAP, Magma, Sage, TeX

S_3\times C_{34}
% in TeX

G:=Group("S3xC34");
// GroupNames label

G:=SmallGroup(204,10);
// by ID

G=gap.SmallGroup(204,10);
# by ID

G:=PCGroup([4,-2,-2,-17,-3,2179]);
// Polycyclic

G:=Group<a,b,c|a^34=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3xC34 in TeX

׿
x
:
Z
F
o
wr
Q
<