d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C2×C34 | 204 | S3xC2xC34 | 408,44 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C34)⋊1S3 = C17×S4 | φ: S3/C1 → S3 ⊆ Aut C2×C34 | 68 | 3 | (C2xC34):1S3 | 408,36 |
(C2×C34)⋊2S3 = C17⋊S4 | φ: S3/C1 → S3 ⊆ Aut C2×C34 | 68 | 6+ | (C2xC34):2S3 | 408,37 |
(C2×C34)⋊3S3 = C17×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C2×C34 | 204 | 2 | (C2xC34):3S3 | 408,24 |
(C2×C34)⋊4S3 = C51⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C2×C34 | 204 | 2 | (C2xC34):4S3 | 408,29 |
(C2×C34)⋊5S3 = C22×D51 | φ: S3/C3 → C2 ⊆ Aut C2×C34 | 204 | (C2xC34):5S3 | 408,45 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C34).S3 = C2×Dic51 | φ: S3/C3 → C2 ⊆ Aut C2×C34 | 408 | (C2xC34).S3 | 408,28 | |
(C2×C34).2S3 = Dic3×C34 | central extension (φ=1) | 408 | (C2xC34).2S3 | 408,23 |