Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C2xC26

Direct product G=NxQ with N=C2xC4 and Q=C2xC26
dρLabelID
C23xC52416C2^3xC52416,227

Semidirect products G=N:Q with N=C2xC4 and Q=C2xC26
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C2xC26) = C13xC22wrC2φ: C2xC26/C13C22 ⊆ Aut C2xC4104(C2xC4):1(C2xC26)416,181
(C2xC4):2(C2xC26) = C13x2+ 1+4φ: C2xC26/C13C22 ⊆ Aut C2xC41044(C2xC4):2(C2xC26)416,231
(C2xC4):3(C2xC26) = C22:C4xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4):3(C2xC26)416,176
(C2xC4):4(C2xC26) = D4xC2xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4):4(C2xC26)416,228
(C2xC4):5(C2xC26) = C4oD4xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4):5(C2xC26)416,230

Non-split extensions G=N.Q with N=C2xC4 and Q=C2xC26
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C2xC26) = C13xC4.D4φ: C2xC26/C13C22 ⊆ Aut C2xC41044(C2xC4).1(C2xC26)416,50
(C2xC4).2(C2xC26) = C13xC4.10D4φ: C2xC26/C13C22 ⊆ Aut C2xC42084(C2xC4).2(C2xC26)416,51
(C2xC4).3(C2xC26) = C13xC4:D4φ: C2xC26/C13C22 ⊆ Aut C2xC4208(C2xC4).3(C2xC26)416,182
(C2xC4).4(C2xC26) = C13xC22:Q8φ: C2xC26/C13C22 ⊆ Aut C2xC4208(C2xC4).4(C2xC26)416,183
(C2xC4).5(C2xC26) = C13xC22.D4φ: C2xC26/C13C22 ⊆ Aut C2xC4208(C2xC4).5(C2xC26)416,184
(C2xC4).6(C2xC26) = C13xC4.4D4φ: C2xC26/C13C22 ⊆ Aut C2xC4208(C2xC4).6(C2xC26)416,185
(C2xC4).7(C2xC26) = C13xC42.C2φ: C2xC26/C13C22 ⊆ Aut C2xC4416(C2xC4).7(C2xC26)416,186
(C2xC4).8(C2xC26) = C13xC42:2C2φ: C2xC26/C13C22 ⊆ Aut C2xC4208(C2xC4).8(C2xC26)416,187
(C2xC4).9(C2xC26) = C13xC4:Q8φ: C2xC26/C13C22 ⊆ Aut C2xC4416(C2xC4).9(C2xC26)416,189
(C2xC4).10(C2xC26) = C13xC8:C22φ: C2xC26/C13C22 ⊆ Aut C2xC41044(C2xC4).10(C2xC26)416,197
(C2xC4).11(C2xC26) = C13xC8.C22φ: C2xC26/C13C22 ⊆ Aut C2xC42084(C2xC4).11(C2xC26)416,198
(C2xC4).12(C2xC26) = C13x2- 1+4φ: C2xC26/C13C22 ⊆ Aut C2xC42084(C2xC4).12(C2xC26)416,232
(C2xC4).13(C2xC26) = C4:C4xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).13(C2xC26)416,177
(C2xC4).14(C2xC26) = C13xC42:C2φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4).14(C2xC26)416,178
(C2xC4).15(C2xC26) = D4xC52φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4).15(C2xC26)416,179
(C2xC4).16(C2xC26) = Q8xC52φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).16(C2xC26)416,180
(C2xC4).17(C2xC26) = C13xD4:C4φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4).17(C2xC26)416,52
(C2xC4).18(C2xC26) = C13xQ8:C4φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).18(C2xC26)416,53
(C2xC4).19(C2xC26) = C13xC4wrC2φ: C2xC26/C26C2 ⊆ Aut C2xC41042(C2xC4).19(C2xC26)416,54
(C2xC4).20(C2xC26) = C13xC4.Q8φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).20(C2xC26)416,56
(C2xC4).21(C2xC26) = C13xC2.D8φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).21(C2xC26)416,57
(C2xC4).22(C2xC26) = C13xC8.C4φ: C2xC26/C26C2 ⊆ Aut C2xC42082(C2xC4).22(C2xC26)416,58
(C2xC4).23(C2xC26) = C13xC4:1D4φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4).23(C2xC26)416,188
(C2xC4).24(C2xC26) = C13xC8oD4φ: C2xC26/C26C2 ⊆ Aut C2xC42082(C2xC4).24(C2xC26)416,192
(C2xC4).25(C2xC26) = D8xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4).25(C2xC26)416,193
(C2xC4).26(C2xC26) = SD16xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4208(C2xC4).26(C2xC26)416,194
(C2xC4).27(C2xC26) = Q16xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).27(C2xC26)416,195
(C2xC4).28(C2xC26) = C13xC4oD8φ: C2xC26/C26C2 ⊆ Aut C2xC42082(C2xC4).28(C2xC26)416,196
(C2xC4).29(C2xC26) = Q8xC2xC26φ: C2xC26/C26C2 ⊆ Aut C2xC4416(C2xC4).29(C2xC26)416,229
(C2xC4).30(C2xC26) = C13xC8:C4central extension (φ=1)416(C2xC4).30(C2xC26)416,47
(C2xC4).31(C2xC26) = C13xC22:C8central extension (φ=1)208(C2xC4).31(C2xC26)416,48
(C2xC4).32(C2xC26) = C13xC4:C8central extension (φ=1)416(C2xC4).32(C2xC26)416,55
(C2xC4).33(C2xC26) = M4(2)xC26central extension (φ=1)208(C2xC4).33(C2xC26)416,191

׿
x
:
Z
F
o
wr
Q
<