extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C2xC26) = C13xC4.D4 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 104 | 4 | (C2xC4).1(C2xC26) | 416,50 |
(C2xC4).2(C2xC26) = C13xC4.10D4 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | 4 | (C2xC4).2(C2xC26) | 416,51 |
(C2xC4).3(C2xC26) = C13xC4:D4 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | | (C2xC4).3(C2xC26) | 416,182 |
(C2xC4).4(C2xC26) = C13xC22:Q8 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | | (C2xC4).4(C2xC26) | 416,183 |
(C2xC4).5(C2xC26) = C13xC22.D4 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | | (C2xC4).5(C2xC26) | 416,184 |
(C2xC4).6(C2xC26) = C13xC4.4D4 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | | (C2xC4).6(C2xC26) | 416,185 |
(C2xC4).7(C2xC26) = C13xC42.C2 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 416 | | (C2xC4).7(C2xC26) | 416,186 |
(C2xC4).8(C2xC26) = C13xC42:2C2 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | | (C2xC4).8(C2xC26) | 416,187 |
(C2xC4).9(C2xC26) = C13xC4:Q8 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 416 | | (C2xC4).9(C2xC26) | 416,189 |
(C2xC4).10(C2xC26) = C13xC8:C22 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 104 | 4 | (C2xC4).10(C2xC26) | 416,197 |
(C2xC4).11(C2xC26) = C13xC8.C22 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | 4 | (C2xC4).11(C2xC26) | 416,198 |
(C2xC4).12(C2xC26) = C13x2- 1+4 | φ: C2xC26/C13 → C22 ⊆ Aut C2xC4 | 208 | 4 | (C2xC4).12(C2xC26) | 416,232 |
(C2xC4).13(C2xC26) = C4:C4xC26 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).13(C2xC26) | 416,177 |
(C2xC4).14(C2xC26) = C13xC42:C2 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | | (C2xC4).14(C2xC26) | 416,178 |
(C2xC4).15(C2xC26) = D4xC52 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | | (C2xC4).15(C2xC26) | 416,179 |
(C2xC4).16(C2xC26) = Q8xC52 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).16(C2xC26) | 416,180 |
(C2xC4).17(C2xC26) = C13xD4:C4 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | | (C2xC4).17(C2xC26) | 416,52 |
(C2xC4).18(C2xC26) = C13xQ8:C4 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).18(C2xC26) | 416,53 |
(C2xC4).19(C2xC26) = C13xC4wrC2 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 104 | 2 | (C2xC4).19(C2xC26) | 416,54 |
(C2xC4).20(C2xC26) = C13xC4.Q8 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).20(C2xC26) | 416,56 |
(C2xC4).21(C2xC26) = C13xC2.D8 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).21(C2xC26) | 416,57 |
(C2xC4).22(C2xC26) = C13xC8.C4 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | 2 | (C2xC4).22(C2xC26) | 416,58 |
(C2xC4).23(C2xC26) = C13xC4:1D4 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | | (C2xC4).23(C2xC26) | 416,188 |
(C2xC4).24(C2xC26) = C13xC8oD4 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | 2 | (C2xC4).24(C2xC26) | 416,192 |
(C2xC4).25(C2xC26) = D8xC26 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | | (C2xC4).25(C2xC26) | 416,193 |
(C2xC4).26(C2xC26) = SD16xC26 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | | (C2xC4).26(C2xC26) | 416,194 |
(C2xC4).27(C2xC26) = Q16xC26 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).27(C2xC26) | 416,195 |
(C2xC4).28(C2xC26) = C13xC4oD8 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 208 | 2 | (C2xC4).28(C2xC26) | 416,196 |
(C2xC4).29(C2xC26) = Q8xC2xC26 | φ: C2xC26/C26 → C2 ⊆ Aut C2xC4 | 416 | | (C2xC4).29(C2xC26) | 416,229 |
(C2xC4).30(C2xC26) = C13xC8:C4 | central extension (φ=1) | 416 | | (C2xC4).30(C2xC26) | 416,47 |
(C2xC4).31(C2xC26) = C13xC22:C8 | central extension (φ=1) | 208 | | (C2xC4).31(C2xC26) | 416,48 |
(C2xC4).32(C2xC26) = C13xC4:C8 | central extension (φ=1) | 416 | | (C2xC4).32(C2xC26) | 416,55 |
(C2xC4).33(C2xC26) = M4(2)xC26 | central extension (φ=1) | 208 | | (C2xC4).33(C2xC26) | 416,191 |