Copied to
clipboard

G = C2×C53⋊C4order 424 = 23·53

Direct product of C2 and C53⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C53⋊C4, C106⋊C4, D53⋊C4, D106.C2, D53.C22, C53⋊(C2×C4), SmallGroup(424,12)

Series: Derived Chief Lower central Upper central

C1C53 — C2×C53⋊C4
C1C53D53C53⋊C4 — C2×C53⋊C4
C53 — C2×C53⋊C4
C1C2

Generators and relations for C2×C53⋊C4
 G = < a,b,c | a2=b53=c4=1, ab=ba, ac=ca, cbc-1=b23 >

53C2
53C2
53C4
53C22
53C4
53C2×C4

Smallest permutation representation of C2×C53⋊C4
On 106 points
Generators in S106
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 61)(9 62)(10 63)(11 64)(12 65)(13 66)(14 67)(15 68)(16 69)(17 70)(18 71)(19 72)(20 73)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 81)(29 82)(30 83)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 94)(42 95)(43 96)(44 97)(45 98)(46 99)(47 100)(48 101)(49 102)(50 103)(51 104)(52 105)(53 106)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53)(54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106)
(1 54)(2 84 53 77)(3 61 52 100)(4 91 51 70)(5 68 50 93)(6 98 49 63)(7 75 48 86)(8 105 47 56)(9 82 46 79)(10 59 45 102)(11 89 44 72)(12 66 43 95)(13 96 42 65)(14 73 41 88)(15 103 40 58)(16 80 39 81)(17 57 38 104)(18 87 37 74)(19 64 36 97)(20 94 35 67)(21 71 34 90)(22 101 33 60)(23 78 32 83)(24 55 31 106)(25 85 30 76)(26 62 29 99)(27 92 28 69)

G:=sub<Sym(106)| (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53)(54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106), (1,54)(2,84,53,77)(3,61,52,100)(4,91,51,70)(5,68,50,93)(6,98,49,63)(7,75,48,86)(8,105,47,56)(9,82,46,79)(10,59,45,102)(11,89,44,72)(12,66,43,95)(13,96,42,65)(14,73,41,88)(15,103,40,58)(16,80,39,81)(17,57,38,104)(18,87,37,74)(19,64,36,97)(20,94,35,67)(21,71,34,90)(22,101,33,60)(23,78,32,83)(24,55,31,106)(25,85,30,76)(26,62,29,99)(27,92,28,69)>;

G:=Group( (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53)(54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106), (1,54)(2,84,53,77)(3,61,52,100)(4,91,51,70)(5,68,50,93)(6,98,49,63)(7,75,48,86)(8,105,47,56)(9,82,46,79)(10,59,45,102)(11,89,44,72)(12,66,43,95)(13,96,42,65)(14,73,41,88)(15,103,40,58)(16,80,39,81)(17,57,38,104)(18,87,37,74)(19,64,36,97)(20,94,35,67)(21,71,34,90)(22,101,33,60)(23,78,32,83)(24,55,31,106)(25,85,30,76)(26,62,29,99)(27,92,28,69) );

G=PermutationGroup([[(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,61),(9,62),(10,63),(11,64),(12,65),(13,66),(14,67),(15,68),(16,69),(17,70),(18,71),(19,72),(20,73),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,81),(29,82),(30,83),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,94),(42,95),(43,96),(44,97),(45,98),(46,99),(47,100),(48,101),(49,102),(50,103),(51,104),(52,105),(53,106)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53),(54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106)], [(1,54),(2,84,53,77),(3,61,52,100),(4,91,51,70),(5,68,50,93),(6,98,49,63),(7,75,48,86),(8,105,47,56),(9,82,46,79),(10,59,45,102),(11,89,44,72),(12,66,43,95),(13,96,42,65),(14,73,41,88),(15,103,40,58),(16,80,39,81),(17,57,38,104),(18,87,37,74),(19,64,36,97),(20,94,35,67),(21,71,34,90),(22,101,33,60),(23,78,32,83),(24,55,31,106),(25,85,30,76),(26,62,29,99),(27,92,28,69)]])

34 conjugacy classes

class 1 2A2B2C4A4B4C4D53A···53M106A···106M
order1222444453···53106···106
size115353535353534···44···4

34 irreducible representations

dim1111144
type+++++
imageC1C2C2C4C4C53⋊C4C2×C53⋊C4
kernelC2×C53⋊C4C53⋊C4D106D53C106C2C1
# reps121221313

Matrix representation of C2×C53⋊C4 in GL4(𝔽1061) generated by

1060000
0106000
0010600
0001060
,
801043801060
1000
0100
0010
,
1060000
221540590637
98712552692
82052981031
G:=sub<GL(4,GF(1061))| [1060,0,0,0,0,1060,0,0,0,0,1060,0,0,0,0,1060],[80,1,0,0,1043,0,1,0,80,0,0,1,1060,0,0,0],[1060,221,98,820,0,540,712,52,0,590,552,98,0,637,692,1031] >;

C2×C53⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{53}\rtimes C_4
% in TeX

G:=Group("C2xC53:C4");
// GroupNames label

G:=SmallGroup(424,12);
// by ID

G=gap.SmallGroup(424,12);
# by ID

G:=PCGroup([4,-2,-2,-2,-53,16,3843,1675]);
// Polycyclic

G:=Group<a,b,c|a^2=b^53=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^23>;
// generators/relations

Export

Subgroup lattice of C2×C53⋊C4 in TeX

׿
×
𝔽