direct product, metabelian, soluble, monomial, A-group
Aliases: C5×C7⋊A4, C35⋊A4, C7⋊(C5×A4), (C2×C70)⋊2C3, (C2×C14)⋊2C15, C22⋊(C5×C7⋊C3), (C2×C10)⋊(C7⋊C3), SmallGroup(420,33)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C14 — C5×C7⋊A4 |
Generators and relations for C5×C7⋊A4
G = < a,b,c,d,e | a5=b7=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b4, ece-1=cd=dc, ede-1=c >
(1 113 85 57 29)(2 114 86 58 30)(3 115 87 59 31)(4 116 88 60 32)(5 117 89 61 33)(6 118 90 62 34)(7 119 91 63 35)(8 120 92 64 36)(9 121 93 65 37)(10 122 94 66 38)(11 123 95 67 39)(12 124 96 68 40)(13 125 97 69 41)(14 126 98 70 42)(15 127 99 71 43)(16 128 100 72 44)(17 129 101 73 45)(18 130 102 74 46)(19 131 103 75 47)(20 132 104 76 48)(21 133 105 77 49)(22 134 106 78 50)(23 135 107 79 51)(24 136 108 80 52)(25 137 109 81 53)(26 138 110 82 54)(27 139 111 83 55)(28 140 112 84 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)(113 120)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(127 134)(128 135)(129 136)(130 137)(131 138)(132 139)(133 140)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 43)(37 44)(38 45)(39 46)(40 47)(41 48)(42 49)(57 78)(58 79)(59 80)(60 81)(61 82)(62 83)(63 84)(64 71)(65 72)(66 73)(67 74)(68 75)(69 76)(70 77)(85 106)(86 107)(87 108)(88 109)(89 110)(90 111)(91 112)(92 99)(93 100)(94 101)(95 102)(96 103)(97 104)(98 105)(113 134)(114 135)(115 136)(116 137)(117 138)(118 139)(119 140)(120 127)(121 128)(122 129)(123 130)(124 131)(125 132)(126 133)
(2 3 5)(4 7 6)(8 22 15)(9 24 19)(10 26 16)(11 28 20)(12 23 17)(13 25 21)(14 27 18)(30 31 33)(32 35 34)(36 50 43)(37 52 47)(38 54 44)(39 56 48)(40 51 45)(41 53 49)(42 55 46)(58 59 61)(60 63 62)(64 78 71)(65 80 75)(66 82 72)(67 84 76)(68 79 73)(69 81 77)(70 83 74)(86 87 89)(88 91 90)(92 106 99)(93 108 103)(94 110 100)(95 112 104)(96 107 101)(97 109 105)(98 111 102)(114 115 117)(116 119 118)(120 134 127)(121 136 131)(122 138 128)(123 140 132)(124 135 129)(125 137 133)(126 139 130)
G:=sub<Sym(140)| (1,113,85,57,29)(2,114,86,58,30)(3,115,87,59,31)(4,116,88,60,32)(5,117,89,61,33)(6,118,90,62,34)(7,119,91,63,35)(8,120,92,64,36)(9,121,93,65,37)(10,122,94,66,38)(11,123,95,67,39)(12,124,96,68,40)(13,125,97,69,41)(14,126,98,70,42)(15,127,99,71,43)(16,128,100,72,44)(17,129,101,73,45)(18,130,102,74,46)(19,131,103,75,47)(20,132,104,76,48)(21,133,105,77,49)(22,134,106,78,50)(23,135,107,79,51)(24,136,108,80,52)(25,137,109,81,53)(26,138,110,82,54)(27,139,111,83,55)(28,140,112,84,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112)(113,120)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139)(133,140), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(85,106)(86,107)(87,108)(88,109)(89,110)(90,111)(91,112)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133), (2,3,5)(4,7,6)(8,22,15)(9,24,19)(10,26,16)(11,28,20)(12,23,17)(13,25,21)(14,27,18)(30,31,33)(32,35,34)(36,50,43)(37,52,47)(38,54,44)(39,56,48)(40,51,45)(41,53,49)(42,55,46)(58,59,61)(60,63,62)(64,78,71)(65,80,75)(66,82,72)(67,84,76)(68,79,73)(69,81,77)(70,83,74)(86,87,89)(88,91,90)(92,106,99)(93,108,103)(94,110,100)(95,112,104)(96,107,101)(97,109,105)(98,111,102)(114,115,117)(116,119,118)(120,134,127)(121,136,131)(122,138,128)(123,140,132)(124,135,129)(125,137,133)(126,139,130)>;
G:=Group( (1,113,85,57,29)(2,114,86,58,30)(3,115,87,59,31)(4,116,88,60,32)(5,117,89,61,33)(6,118,90,62,34)(7,119,91,63,35)(8,120,92,64,36)(9,121,93,65,37)(10,122,94,66,38)(11,123,95,67,39)(12,124,96,68,40)(13,125,97,69,41)(14,126,98,70,42)(15,127,99,71,43)(16,128,100,72,44)(17,129,101,73,45)(18,130,102,74,46)(19,131,103,75,47)(20,132,104,76,48)(21,133,105,77,49)(22,134,106,78,50)(23,135,107,79,51)(24,136,108,80,52)(25,137,109,81,53)(26,138,110,82,54)(27,139,111,83,55)(28,140,112,84,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112)(113,120)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139)(133,140), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(85,106)(86,107)(87,108)(88,109)(89,110)(90,111)(91,112)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133), (2,3,5)(4,7,6)(8,22,15)(9,24,19)(10,26,16)(11,28,20)(12,23,17)(13,25,21)(14,27,18)(30,31,33)(32,35,34)(36,50,43)(37,52,47)(38,54,44)(39,56,48)(40,51,45)(41,53,49)(42,55,46)(58,59,61)(60,63,62)(64,78,71)(65,80,75)(66,82,72)(67,84,76)(68,79,73)(69,81,77)(70,83,74)(86,87,89)(88,91,90)(92,106,99)(93,108,103)(94,110,100)(95,112,104)(96,107,101)(97,109,105)(98,111,102)(114,115,117)(116,119,118)(120,134,127)(121,136,131)(122,138,128)(123,140,132)(124,135,129)(125,137,133)(126,139,130) );
G=PermutationGroup([[(1,113,85,57,29),(2,114,86,58,30),(3,115,87,59,31),(4,116,88,60,32),(5,117,89,61,33),(6,118,90,62,34),(7,119,91,63,35),(8,120,92,64,36),(9,121,93,65,37),(10,122,94,66,38),(11,123,95,67,39),(12,124,96,68,40),(13,125,97,69,41),(14,126,98,70,42),(15,127,99,71,43),(16,128,100,72,44),(17,129,101,73,45),(18,130,102,74,46),(19,131,103,75,47),(20,132,104,76,48),(21,133,105,77,49),(22,134,106,78,50),(23,135,107,79,51),(24,136,108,80,52),(25,137,109,81,53),(26,138,110,82,54),(27,139,111,83,55),(28,140,112,84,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112),(113,120),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(127,134),(128,135),(129,136),(130,137),(131,138),(132,139),(133,140)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,43),(37,44),(38,45),(39,46),(40,47),(41,48),(42,49),(57,78),(58,79),(59,80),(60,81),(61,82),(62,83),(63,84),(64,71),(65,72),(66,73),(67,74),(68,75),(69,76),(70,77),(85,106),(86,107),(87,108),(88,109),(89,110),(90,111),(91,112),(92,99),(93,100),(94,101),(95,102),(96,103),(97,104),(98,105),(113,134),(114,135),(115,136),(116,137),(117,138),(118,139),(119,140),(120,127),(121,128),(122,129),(123,130),(124,131),(125,132),(126,133)], [(2,3,5),(4,7,6),(8,22,15),(9,24,19),(10,26,16),(11,28,20),(12,23,17),(13,25,21),(14,27,18),(30,31,33),(32,35,34),(36,50,43),(37,52,47),(38,54,44),(39,56,48),(40,51,45),(41,53,49),(42,55,46),(58,59,61),(60,63,62),(64,78,71),(65,80,75),(66,82,72),(67,84,76),(68,79,73),(69,81,77),(70,83,74),(86,87,89),(88,91,90),(92,106,99),(93,108,103),(94,110,100),(95,112,104),(96,107,101),(97,109,105),(98,111,102),(114,115,117),(116,119,118),(120,134,127),(121,136,131),(122,138,128),(123,140,132),(124,135,129),(125,137,133),(126,139,130)]])
60 conjugacy classes
class | 1 | 2 | 3A | 3B | 5A | 5B | 5C | 5D | 7A | 7B | 10A | 10B | 10C | 10D | 14A | ··· | 14F | 15A | ··· | 15H | 35A | ··· | 35H | 70A | ··· | 70X |
order | 1 | 2 | 3 | 3 | 5 | 5 | 5 | 5 | 7 | 7 | 10 | 10 | 10 | 10 | 14 | ··· | 14 | 15 | ··· | 15 | 35 | ··· | 35 | 70 | ··· | 70 |
size | 1 | 3 | 28 | 28 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 28 | ··· | 28 | 3 | ··· | 3 | 3 | ··· | 3 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||
image | C1 | C3 | C5 | C15 | A4 | C7⋊C3 | C5×A4 | C7⋊A4 | C5×C7⋊C3 | C5×C7⋊A4 |
kernel | C5×C7⋊A4 | C2×C70 | C7⋊A4 | C2×C14 | C35 | C2×C10 | C7 | C5 | C22 | C1 |
# reps | 1 | 2 | 4 | 8 | 1 | 2 | 4 | 6 | 8 | 24 |
Matrix representation of C5×C7⋊A4 ►in GL4(𝔽211) generated by
107 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 21 |
0 | 0 | 1 | 20 |
1 | 0 | 0 | 0 |
0 | 84 | 131 | 187 |
0 | 99 | 92 | 49 |
0 | 131 | 187 | 34 |
1 | 0 | 0 | 0 |
0 | 172 | 179 | 73 |
0 | 80 | 133 | 24 |
0 | 179 | 73 | 116 |
14 | 0 | 0 | 0 |
0 | 1 | 0 | 20 |
0 | 0 | 0 | 210 |
0 | 0 | 1 | 210 |
G:=sub<GL(4,GF(211))| [107,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,1,0,1,21,20],[1,0,0,0,0,84,99,131,0,131,92,187,0,187,49,34],[1,0,0,0,0,172,80,179,0,179,133,73,0,73,24,116],[14,0,0,0,0,1,0,0,0,0,0,1,0,20,210,210] >;
C5×C7⋊A4 in GAP, Magma, Sage, TeX
C_5\times C_7\rtimes A_4
% in TeX
G:=Group("C5xC7:A4");
// GroupNames label
G:=SmallGroup(420,33);
// by ID
G=gap.SmallGroup(420,33);
# by ID
G:=PCGroup([5,-3,-5,-2,2,-7,452,903,3004]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^7=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^4,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export