extension | φ:Q→Aut N | d | ρ | Label | ID |
C105⋊1C4 = C5⋊Dic21 | φ: C4/C1 → C4 ⊆ Aut C105 | 105 | 4 | C105:1C4 | 420,23 |
C105⋊2C4 = C3×C7⋊F5 | φ: C4/C1 → C4 ⊆ Aut C105 | 105 | 4 | C105:2C4 | 420,21 |
C105⋊3C4 = C7×C3⋊F5 | φ: C4/C1 → C4 ⊆ Aut C105 | 105 | 4 | C105:3C4 | 420,22 |
C105⋊4C4 = F5×C21 | φ: C4/C1 → C4 ⊆ Aut C105 | 105 | 4 | C105:4C4 | 420,20 |
C105⋊5C4 = Dic105 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2- | C105:5C4 | 420,11 |
C105⋊6C4 = C3×Dic35 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2 | C105:6C4 | 420,7 |
C105⋊7C4 = C5×Dic21 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2 | C105:7C4 | 420,9 |
C105⋊8C4 = C7×Dic15 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2 | C105:8C4 | 420,10 |
C105⋊9C4 = C15×Dic7 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2 | C105:9C4 | 420,5 |
C105⋊10C4 = Dic5×C21 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2 | C105:10C4 | 420,6 |
C105⋊11C4 = Dic3×C35 | φ: C4/C2 → C2 ⊆ Aut C105 | 420 | 2 | C105:11C4 | 420,8 |