Copied to
clipboard

G = C3×C7⋊F5order 420 = 22·3·5·7

Direct product of C3 and C7⋊F5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C3×C7⋊F5, C212F5, C1052C4, C356C12, C152Dic7, C5⋊(C3×Dic7), C73(C3×F5), D5.(C3×D7), (C3×D5).2D7, (C7×D5).3C6, (D5×C21).2C2, SmallGroup(420,21)

Series: Derived Chief Lower central Upper central

C1C35 — C3×C7⋊F5
C1C7C35C7×D5D5×C21 — C3×C7⋊F5
C35 — C3×C7⋊F5
C1C3

Generators and relations for C3×C7⋊F5
 G = < a,b,c,d | a3=b7=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

5C2
35C4
5C6
5C14
35C12
7F5
5Dic7
5C42
7C3×F5
5C3×Dic7

Smallest permutation representation of C3×C7⋊F5
On 105 points
Generators in S105
(1 71 36)(2 72 37)(3 73 38)(4 74 39)(5 75 40)(6 76 41)(7 77 42)(8 78 43)(9 79 44)(10 80 45)(11 81 46)(12 82 47)(13 83 48)(14 84 49)(15 85 50)(16 86 51)(17 87 52)(18 88 53)(19 89 54)(20 90 55)(21 91 56)(22 92 57)(23 93 58)(24 94 59)(25 95 60)(26 96 61)(27 97 62)(28 98 63)(29 99 64)(30 100 65)(31 101 66)(32 102 67)(33 103 68)(34 104 69)(35 105 70)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)(36 64 57 50 43)(37 65 58 51 44)(38 66 59 52 45)(39 67 60 53 46)(40 68 61 54 47)(41 69 62 55 48)(42 70 63 56 49)(71 99 92 85 78)(72 100 93 86 79)(73 101 94 87 80)(74 102 95 88 81)(75 103 96 89 82)(76 104 97 90 83)(77 105 98 91 84)
(2 7)(3 6)(4 5)(8 15 29 22)(9 21 30 28)(10 20 31 27)(11 19 32 26)(12 18 33 25)(13 17 34 24)(14 16 35 23)(37 42)(38 41)(39 40)(43 50 64 57)(44 56 65 63)(45 55 66 62)(46 54 67 61)(47 53 68 60)(48 52 69 59)(49 51 70 58)(72 77)(73 76)(74 75)(78 85 99 92)(79 91 100 98)(80 90 101 97)(81 89 102 96)(82 88 103 95)(83 87 104 94)(84 86 105 93)

G:=sub<Sym(105)| (1,71,36)(2,72,37)(3,73,38)(4,74,39)(5,75,40)(6,76,41)(7,77,42)(8,78,43)(9,79,44)(10,80,45)(11,81,46)(12,82,47)(13,83,48)(14,84,49)(15,85,50)(16,86,51)(17,87,52)(18,88,53)(19,89,54)(20,90,55)(21,91,56)(22,92,57)(23,93,58)(24,94,59)(25,95,60)(26,96,61)(27,97,62)(28,98,63)(29,99,64)(30,100,65)(31,101,66)(32,102,67)(33,103,68)(34,104,69)(35,105,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49)(71,99,92,85,78)(72,100,93,86,79)(73,101,94,87,80)(74,102,95,88,81)(75,103,96,89,82)(76,104,97,90,83)(77,105,98,91,84), (2,7)(3,6)(4,5)(8,15,29,22)(9,21,30,28)(10,20,31,27)(11,19,32,26)(12,18,33,25)(13,17,34,24)(14,16,35,23)(37,42)(38,41)(39,40)(43,50,64,57)(44,56,65,63)(45,55,66,62)(46,54,67,61)(47,53,68,60)(48,52,69,59)(49,51,70,58)(72,77)(73,76)(74,75)(78,85,99,92)(79,91,100,98)(80,90,101,97)(81,89,102,96)(82,88,103,95)(83,87,104,94)(84,86,105,93)>;

G:=Group( (1,71,36)(2,72,37)(3,73,38)(4,74,39)(5,75,40)(6,76,41)(7,77,42)(8,78,43)(9,79,44)(10,80,45)(11,81,46)(12,82,47)(13,83,48)(14,84,49)(15,85,50)(16,86,51)(17,87,52)(18,88,53)(19,89,54)(20,90,55)(21,91,56)(22,92,57)(23,93,58)(24,94,59)(25,95,60)(26,96,61)(27,97,62)(28,98,63)(29,99,64)(30,100,65)(31,101,66)(32,102,67)(33,103,68)(34,104,69)(35,105,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49)(71,99,92,85,78)(72,100,93,86,79)(73,101,94,87,80)(74,102,95,88,81)(75,103,96,89,82)(76,104,97,90,83)(77,105,98,91,84), (2,7)(3,6)(4,5)(8,15,29,22)(9,21,30,28)(10,20,31,27)(11,19,32,26)(12,18,33,25)(13,17,34,24)(14,16,35,23)(37,42)(38,41)(39,40)(43,50,64,57)(44,56,65,63)(45,55,66,62)(46,54,67,61)(47,53,68,60)(48,52,69,59)(49,51,70,58)(72,77)(73,76)(74,75)(78,85,99,92)(79,91,100,98)(80,90,101,97)(81,89,102,96)(82,88,103,95)(83,87,104,94)(84,86,105,93) );

G=PermutationGroup([[(1,71,36),(2,72,37),(3,73,38),(4,74,39),(5,75,40),(6,76,41),(7,77,42),(8,78,43),(9,79,44),(10,80,45),(11,81,46),(12,82,47),(13,83,48),(14,84,49),(15,85,50),(16,86,51),(17,87,52),(18,88,53),(19,89,54),(20,90,55),(21,91,56),(22,92,57),(23,93,58),(24,94,59),(25,95,60),(26,96,61),(27,97,62),(28,98,63),(29,99,64),(30,100,65),(31,101,66),(32,102,67),(33,103,68),(34,104,69),(35,105,70)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105)], [(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14),(36,64,57,50,43),(37,65,58,51,44),(38,66,59,52,45),(39,67,60,53,46),(40,68,61,54,47),(41,69,62,55,48),(42,70,63,56,49),(71,99,92,85,78),(72,100,93,86,79),(73,101,94,87,80),(74,102,95,88,81),(75,103,96,89,82),(76,104,97,90,83),(77,105,98,91,84)], [(2,7),(3,6),(4,5),(8,15,29,22),(9,21,30,28),(10,20,31,27),(11,19,32,26),(12,18,33,25),(13,17,34,24),(14,16,35,23),(37,42),(38,41),(39,40),(43,50,64,57),(44,56,65,63),(45,55,66,62),(46,54,67,61),(47,53,68,60),(48,52,69,59),(49,51,70,58),(72,77),(73,76),(74,75),(78,85,99,92),(79,91,100,98),(80,90,101,97),(81,89,102,96),(82,88,103,95),(83,87,104,94),(84,86,105,93)]])

51 conjugacy classes

class 1  2 3A3B4A4B 5 6A6B7A7B7C12A12B12C12D14A14B14C15A15B21A···21F35A···35F42A···42F105A···105L
order12334456677712121212141414151521···2135···3542···42105···105
size1511353545522235353535101010442···24···410···104···4

51 irreducible representations

dim11111122224444
type+++-+
imageC1C2C3C4C6C12D7Dic7C3×D7C3×Dic7F5C3×F5C7⋊F5C3×C7⋊F5
kernelC3×C7⋊F5D5×C21C7⋊F5C105C7×D5C35C3×D5C15D5C5C21C7C3C1
# reps112224336612612

Matrix representation of C3×C7⋊F5 in GL6(𝔽421)

2000000
0200000
001000
000100
000010
000001
,
1164200000
100000
00042000
00140300
00000420
00001403
,
100000
010000
0036926310
001585101
00420000
00042000
,
39200000
4290000
00140342018
00042001
0000369252
000015852

G:=sub<GL(6,GF(421))| [20,0,0,0,0,0,0,20,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[116,1,0,0,0,0,420,0,0,0,0,0,0,0,0,1,0,0,0,0,420,403,0,0,0,0,0,0,0,1,0,0,0,0,420,403],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,369,158,420,0,0,0,263,51,0,420,0,0,1,0,0,0,0,0,0,1,0,0],[392,4,0,0,0,0,0,29,0,0,0,0,0,0,1,0,0,0,0,0,403,420,0,0,0,0,420,0,369,158,0,0,18,1,252,52] >;

C3×C7⋊F5 in GAP, Magma, Sage, TeX

C_3\times C_7\rtimes F_5
% in TeX

G:=Group("C3xC7:F5");
// GroupNames label

G:=SmallGroup(420,21);
// by ID

G=gap.SmallGroup(420,21);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,-7,30,723,173,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^7=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C3×C7⋊F5 in TeX

׿
×
𝔽