Copied to
clipboard

G = A4×C3.A4order 432 = 24·33

Direct product of A4 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C3.A4, C3.1A42, (C22×A4)⋊C9, C241(C3×C9), (C3×A4).2A4, C223(C9×A4), C24⋊C91C3, (C23×C6).1C32, (A4×C2×C6).1C3, (C2×C6).1(C3×A4), C221(C3×C3.A4), (C22×C3.A4)⋊1C3, SmallGroup(432,524)

Series: Derived Chief Lower central Upper central

C1C24 — A4×C3.A4
C1C22C24C23×C6A4×C2×C6 — A4×C3.A4
C24 — A4×C3.A4
C1C3

Generators and relations for A4×C3.A4
 G = < a,b,c,d,e,f,g | a2=b2=c3=d3=e2=f2=1, g3=d, cac-1=ab=ba, ad=da, ae=ea, af=fa, ag=ga, cbc-1=a, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=ef=fe, gfg-1=e >

Subgroups: 358 in 74 conjugacy classes, 21 normal (13 characteristic)
C1, C2, C3, C3, C22, C22, C6, C23, C9, C32, A4, C2×C6, C2×C6, C24, C18, C3×C6, C2×A4, C22×C6, C3×C9, C3.A4, C3.A4, C2×C18, C3×A4, C62, C22×A4, C23×C6, C2×C3.A4, C6×A4, C9×A4, C3×C3.A4, C22×C3.A4, C24⋊C9, A4×C2×C6, A4×C3.A4
Quotients: C1, C3, C9, C32, A4, C3×C9, C3.A4, C3×A4, C9×A4, C3×C3.A4, A42, A4×C3.A4

Smallest permutation representation of A4×C3.A4
On 54 points
Generators in S54
(1 25)(2 26)(3 27)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 52)(11 53)(12 54)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)
(10 52)(11 53)(12 54)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(1 49 31)(2 50 32)(3 51 33)(4 52 34)(5 53 35)(6 54 36)(7 46 28)(8 47 29)(9 48 30)(10 37 19)(11 38 20)(12 39 21)(13 40 22)(14 41 23)(15 42 24)(16 43 25)(17 44 26)(18 45 27)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(2 26)(3 27)(5 20)(6 21)(8 23)(9 24)(11 53)(12 54)(14 47)(15 48)(17 50)(18 51)(29 41)(30 42)(32 44)(33 45)(35 38)(36 39)
(1 25)(3 27)(4 19)(6 21)(7 22)(9 24)(10 52)(12 54)(13 46)(15 48)(16 49)(18 51)(28 40)(30 42)(31 43)(33 45)(34 37)(36 39)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51), (10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,49,31)(2,50,32)(3,51,33)(4,52,34)(5,53,35)(6,54,36)(7,46,28)(8,47,29)(9,48,30)(10,37,19)(11,38,20)(12,39,21)(13,40,22)(14,41,23)(15,42,24)(16,43,25)(17,44,26)(18,45,27), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (2,26)(3,27)(5,20)(6,21)(8,23)(9,24)(11,53)(12,54)(14,47)(15,48)(17,50)(18,51)(29,41)(30,42)(32,44)(33,45)(35,38)(36,39), (1,25)(3,27)(4,19)(6,21)(7,22)(9,24)(10,52)(12,54)(13,46)(15,48)(16,49)(18,51)(28,40)(30,42)(31,43)(33,45)(34,37)(36,39), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51), (10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,49,31)(2,50,32)(3,51,33)(4,52,34)(5,53,35)(6,54,36)(7,46,28)(8,47,29)(9,48,30)(10,37,19)(11,38,20)(12,39,21)(13,40,22)(14,41,23)(15,42,24)(16,43,25)(17,44,26)(18,45,27), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (2,26)(3,27)(5,20)(6,21)(8,23)(9,24)(11,53)(12,54)(14,47)(15,48)(17,50)(18,51)(29,41)(30,42)(32,44)(33,45)(35,38)(36,39), (1,25)(3,27)(4,19)(6,21)(7,22)(9,24)(10,52)(12,54)(13,46)(15,48)(16,49)(18,51)(28,40)(30,42)(31,43)(33,45)(34,37)(36,39), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,52),(11,53),(12,54),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51)], [(10,52),(11,53),(12,54),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(1,49,31),(2,50,32),(3,51,33),(4,52,34),(5,53,35),(6,54,36),(7,46,28),(8,47,29),(9,48,30),(10,37,19),(11,38,20),(12,39,21),(13,40,22),(14,41,23),(15,42,24),(16,43,25),(17,44,26),(18,45,27)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(2,26),(3,27),(5,20),(6,21),(8,23),(9,24),(11,53),(12,54),(14,47),(15,48),(17,50),(18,51),(29,41),(30,42),(32,44),(33,45),(35,38),(36,39)], [(1,25),(3,27),(4,19),(6,21),(7,22),(9,24),(10,52),(12,54),(13,46),(15,48),(16,49),(18,51),(28,40),(30,42),(31,43),(33,45),(34,37),(36,39)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C···3H6A6B6C6D6E6F6G···6L9A···9F9G···9R18A···18F
order1222333···36666666···69···99···918···18
size1339114···433339912···124···416···1612···12

48 irreducible representations

dim111113333399
type++++
imageC1C3C3C3C9A4A4C3.A4C3×A4C9×A4A42A4×C3.A4
kernelA4×C3.A4C22×C3.A4C24⋊C9A4×C2×C6C22×A4C3.A4C3×A4A4C2×C6C22C3C1
# reps1242181164612

Matrix representation of A4×C3.A4 in GL6(𝔽19)

100000
010000
001000
000001
000181818
000100
,
100000
010000
001000
000010
000100
000181818
,
1100000
0110000
0011000
000100
000001
000181818
,
700000
070000
007000
000100
000010
000001
,
0181000
0180000
1180000
000100
000010
000001
,
1800000
1801000
1810000
000100
000010
000001
,
090000
009000
900000
000100
000010
000001

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,1,18,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,18,0,0,0,1,0,18,0,0,0,0,0,18],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,18,0,0,0,0,0,18,0,0,0,0,1,18],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,18,18,18,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,18,18,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,9,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

A4×C3.A4 in GAP, Magma, Sage, TeX

A_4\times C_3.A_4
% in TeX

G:=Group("A4xC3.A4");
// GroupNames label

G:=SmallGroup(432,524);
// by ID

G=gap.SmallGroup(432,524);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,50,766,326,13613,5298]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^3=d^3=e^2=f^2=1,g^3=d,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

׿
×
𝔽