Copied to
clipboard

G = C3×C6×SL2(𝔽3)  order 432 = 24·33

Direct product of C3×C6 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C3×C6×SL2(𝔽3), C62.12A4, (C2×Q8)⋊C33, Q8⋊(C32×C6), (C6×Q8)⋊C32, C6.19(C6×A4), (Q8×C32)⋊11C6, C22.2(C32×A4), C2.2(A4×C3×C6), (Q8×C3×C6)⋊3C3, (C3×Q8)⋊2(C3×C6), (C2×C6).27(C3×A4), (C3×C6).26(C2×A4), SmallGroup(432,698)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C3×C6×SL2(𝔽3)
C1C2Q8C3×Q8Q8×C32C32×SL2(𝔽3) — C3×C6×SL2(𝔽3)
Q8 — C3×C6×SL2(𝔽3)
C1C62

Generators and relations for C3×C6×SL2(𝔽3)
 G = < a,b,c,d,e | a3=b6=c4=e3=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ece-1=d, ede-1=cd >

Subgroups: 598 in 220 conjugacy classes, 86 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C2×C4, Q8, Q8, C32, C32, C12, C2×C6, C2×C6, C2×Q8, C3×C6, C3×C6, C3×C6, SL2(𝔽3), C2×C12, C3×Q8, C3×Q8, C33, C3×C12, C62, C62, C2×SL2(𝔽3), C6×Q8, C32×C6, C3×SL2(𝔽3), C6×C12, Q8×C32, Q8×C32, C3×C62, C6×SL2(𝔽3), Q8×C3×C6, C32×SL2(𝔽3), C3×C6×SL2(𝔽3)
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, SL2(𝔽3), C2×A4, C33, C3×A4, C2×SL2(𝔽3), C32×C6, C3×SL2(𝔽3), C6×A4, C32×A4, C6×SL2(𝔽3), C32×SL2(𝔽3), A4×C3×C6, C3×C6×SL2(𝔽3)

Smallest permutation representation of C3×C6×SL2(𝔽3)
On 144 points
Generators in S144
(1 77 143)(2 78 144)(3 73 139)(4 74 140)(5 75 141)(6 76 142)(7 71 51)(8 72 52)(9 67 53)(10 68 54)(11 69 49)(12 70 50)(13 59 63)(14 60 64)(15 55 65)(16 56 66)(17 57 61)(18 58 62)(19 131 39)(20 132 40)(21 127 41)(22 128 42)(23 129 37)(24 130 38)(25 96 45)(26 91 46)(27 92 47)(28 93 48)(29 94 43)(30 95 44)(31 125 111)(32 126 112)(33 121 113)(34 122 114)(35 123 109)(36 124 110)(79 89 137)(80 90 138)(81 85 133)(82 86 134)(83 87 135)(84 88 136)(97 120 106)(98 115 107)(99 116 108)(100 117 103)(101 118 104)(102 119 105)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 137 97 34)(2 138 98 35)(3 133 99 36)(4 134 100 31)(5 135 101 32)(6 136 102 33)(7 17 48 130)(8 18 43 131)(9 13 44 132)(10 14 45 127)(11 15 46 128)(12 16 47 129)(19 52 62 94)(20 53 63 95)(21 54 64 96)(22 49 65 91)(23 50 66 92)(24 51 61 93)(25 41 68 60)(26 42 69 55)(27 37 70 56)(28 38 71 57)(29 39 72 58)(30 40 67 59)(73 81 116 124)(74 82 117 125)(75 83 118 126)(76 84 119 121)(77 79 120 122)(78 80 115 123)(85 108 110 139)(86 103 111 140)(87 104 112 141)(88 105 113 142)(89 106 114 143)(90 107 109 144)
(1 62 97 19)(2 63 98 20)(3 64 99 21)(4 65 100 22)(5 66 101 23)(6 61 102 24)(7 121 48 84)(8 122 43 79)(9 123 44 80)(10 124 45 81)(11 125 46 82)(12 126 47 83)(13 115 132 78)(14 116 127 73)(15 117 128 74)(16 118 129 75)(17 119 130 76)(18 120 131 77)(25 85 68 110)(26 86 69 111)(27 87 70 112)(28 88 71 113)(29 89 72 114)(30 90 67 109)(31 91 134 49)(32 92 135 50)(33 93 136 51)(34 94 137 52)(35 95 138 53)(36 96 133 54)(37 141 56 104)(38 142 57 105)(39 143 58 106)(40 144 59 107)(41 139 60 108)(42 140 55 103)
(1 75 139)(2 76 140)(3 77 141)(4 78 142)(5 73 143)(6 74 144)(7 55 138)(8 56 133)(9 57 134)(10 58 135)(11 59 136)(12 60 137)(13 88 49)(14 89 50)(15 90 51)(16 85 52)(17 86 53)(18 87 54)(19 126 25)(20 121 26)(21 122 27)(22 123 28)(23 124 29)(24 125 30)(31 44 38)(32 45 39)(33 46 40)(34 47 41)(35 48 42)(36 43 37)(61 82 67)(62 83 68)(63 84 69)(64 79 70)(65 80 71)(66 81 72)(91 132 113)(92 127 114)(93 128 109)(94 129 110)(95 130 111)(96 131 112)(97 118 108)(98 119 103)(99 120 104)(100 115 105)(101 116 106)(102 117 107)

G:=sub<Sym(144)| (1,77,143)(2,78,144)(3,73,139)(4,74,140)(5,75,141)(6,76,142)(7,71,51)(8,72,52)(9,67,53)(10,68,54)(11,69,49)(12,70,50)(13,59,63)(14,60,64)(15,55,65)(16,56,66)(17,57,61)(18,58,62)(19,131,39)(20,132,40)(21,127,41)(22,128,42)(23,129,37)(24,130,38)(25,96,45)(26,91,46)(27,92,47)(28,93,48)(29,94,43)(30,95,44)(31,125,111)(32,126,112)(33,121,113)(34,122,114)(35,123,109)(36,124,110)(79,89,137)(80,90,138)(81,85,133)(82,86,134)(83,87,135)(84,88,136)(97,120,106)(98,115,107)(99,116,108)(100,117,103)(101,118,104)(102,119,105), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,137,97,34)(2,138,98,35)(3,133,99,36)(4,134,100,31)(5,135,101,32)(6,136,102,33)(7,17,48,130)(8,18,43,131)(9,13,44,132)(10,14,45,127)(11,15,46,128)(12,16,47,129)(19,52,62,94)(20,53,63,95)(21,54,64,96)(22,49,65,91)(23,50,66,92)(24,51,61,93)(25,41,68,60)(26,42,69,55)(27,37,70,56)(28,38,71,57)(29,39,72,58)(30,40,67,59)(73,81,116,124)(74,82,117,125)(75,83,118,126)(76,84,119,121)(77,79,120,122)(78,80,115,123)(85,108,110,139)(86,103,111,140)(87,104,112,141)(88,105,113,142)(89,106,114,143)(90,107,109,144), (1,62,97,19)(2,63,98,20)(3,64,99,21)(4,65,100,22)(5,66,101,23)(6,61,102,24)(7,121,48,84)(8,122,43,79)(9,123,44,80)(10,124,45,81)(11,125,46,82)(12,126,47,83)(13,115,132,78)(14,116,127,73)(15,117,128,74)(16,118,129,75)(17,119,130,76)(18,120,131,77)(25,85,68,110)(26,86,69,111)(27,87,70,112)(28,88,71,113)(29,89,72,114)(30,90,67,109)(31,91,134,49)(32,92,135,50)(33,93,136,51)(34,94,137,52)(35,95,138,53)(36,96,133,54)(37,141,56,104)(38,142,57,105)(39,143,58,106)(40,144,59,107)(41,139,60,108)(42,140,55,103), (1,75,139)(2,76,140)(3,77,141)(4,78,142)(5,73,143)(6,74,144)(7,55,138)(8,56,133)(9,57,134)(10,58,135)(11,59,136)(12,60,137)(13,88,49)(14,89,50)(15,90,51)(16,85,52)(17,86,53)(18,87,54)(19,126,25)(20,121,26)(21,122,27)(22,123,28)(23,124,29)(24,125,30)(31,44,38)(32,45,39)(33,46,40)(34,47,41)(35,48,42)(36,43,37)(61,82,67)(62,83,68)(63,84,69)(64,79,70)(65,80,71)(66,81,72)(91,132,113)(92,127,114)(93,128,109)(94,129,110)(95,130,111)(96,131,112)(97,118,108)(98,119,103)(99,120,104)(100,115,105)(101,116,106)(102,117,107)>;

G:=Group( (1,77,143)(2,78,144)(3,73,139)(4,74,140)(5,75,141)(6,76,142)(7,71,51)(8,72,52)(9,67,53)(10,68,54)(11,69,49)(12,70,50)(13,59,63)(14,60,64)(15,55,65)(16,56,66)(17,57,61)(18,58,62)(19,131,39)(20,132,40)(21,127,41)(22,128,42)(23,129,37)(24,130,38)(25,96,45)(26,91,46)(27,92,47)(28,93,48)(29,94,43)(30,95,44)(31,125,111)(32,126,112)(33,121,113)(34,122,114)(35,123,109)(36,124,110)(79,89,137)(80,90,138)(81,85,133)(82,86,134)(83,87,135)(84,88,136)(97,120,106)(98,115,107)(99,116,108)(100,117,103)(101,118,104)(102,119,105), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,137,97,34)(2,138,98,35)(3,133,99,36)(4,134,100,31)(5,135,101,32)(6,136,102,33)(7,17,48,130)(8,18,43,131)(9,13,44,132)(10,14,45,127)(11,15,46,128)(12,16,47,129)(19,52,62,94)(20,53,63,95)(21,54,64,96)(22,49,65,91)(23,50,66,92)(24,51,61,93)(25,41,68,60)(26,42,69,55)(27,37,70,56)(28,38,71,57)(29,39,72,58)(30,40,67,59)(73,81,116,124)(74,82,117,125)(75,83,118,126)(76,84,119,121)(77,79,120,122)(78,80,115,123)(85,108,110,139)(86,103,111,140)(87,104,112,141)(88,105,113,142)(89,106,114,143)(90,107,109,144), (1,62,97,19)(2,63,98,20)(3,64,99,21)(4,65,100,22)(5,66,101,23)(6,61,102,24)(7,121,48,84)(8,122,43,79)(9,123,44,80)(10,124,45,81)(11,125,46,82)(12,126,47,83)(13,115,132,78)(14,116,127,73)(15,117,128,74)(16,118,129,75)(17,119,130,76)(18,120,131,77)(25,85,68,110)(26,86,69,111)(27,87,70,112)(28,88,71,113)(29,89,72,114)(30,90,67,109)(31,91,134,49)(32,92,135,50)(33,93,136,51)(34,94,137,52)(35,95,138,53)(36,96,133,54)(37,141,56,104)(38,142,57,105)(39,143,58,106)(40,144,59,107)(41,139,60,108)(42,140,55,103), (1,75,139)(2,76,140)(3,77,141)(4,78,142)(5,73,143)(6,74,144)(7,55,138)(8,56,133)(9,57,134)(10,58,135)(11,59,136)(12,60,137)(13,88,49)(14,89,50)(15,90,51)(16,85,52)(17,86,53)(18,87,54)(19,126,25)(20,121,26)(21,122,27)(22,123,28)(23,124,29)(24,125,30)(31,44,38)(32,45,39)(33,46,40)(34,47,41)(35,48,42)(36,43,37)(61,82,67)(62,83,68)(63,84,69)(64,79,70)(65,80,71)(66,81,72)(91,132,113)(92,127,114)(93,128,109)(94,129,110)(95,130,111)(96,131,112)(97,118,108)(98,119,103)(99,120,104)(100,115,105)(101,116,106)(102,117,107) );

G=PermutationGroup([[(1,77,143),(2,78,144),(3,73,139),(4,74,140),(5,75,141),(6,76,142),(7,71,51),(8,72,52),(9,67,53),(10,68,54),(11,69,49),(12,70,50),(13,59,63),(14,60,64),(15,55,65),(16,56,66),(17,57,61),(18,58,62),(19,131,39),(20,132,40),(21,127,41),(22,128,42),(23,129,37),(24,130,38),(25,96,45),(26,91,46),(27,92,47),(28,93,48),(29,94,43),(30,95,44),(31,125,111),(32,126,112),(33,121,113),(34,122,114),(35,123,109),(36,124,110),(79,89,137),(80,90,138),(81,85,133),(82,86,134),(83,87,135),(84,88,136),(97,120,106),(98,115,107),(99,116,108),(100,117,103),(101,118,104),(102,119,105)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,137,97,34),(2,138,98,35),(3,133,99,36),(4,134,100,31),(5,135,101,32),(6,136,102,33),(7,17,48,130),(8,18,43,131),(9,13,44,132),(10,14,45,127),(11,15,46,128),(12,16,47,129),(19,52,62,94),(20,53,63,95),(21,54,64,96),(22,49,65,91),(23,50,66,92),(24,51,61,93),(25,41,68,60),(26,42,69,55),(27,37,70,56),(28,38,71,57),(29,39,72,58),(30,40,67,59),(73,81,116,124),(74,82,117,125),(75,83,118,126),(76,84,119,121),(77,79,120,122),(78,80,115,123),(85,108,110,139),(86,103,111,140),(87,104,112,141),(88,105,113,142),(89,106,114,143),(90,107,109,144)], [(1,62,97,19),(2,63,98,20),(3,64,99,21),(4,65,100,22),(5,66,101,23),(6,61,102,24),(7,121,48,84),(8,122,43,79),(9,123,44,80),(10,124,45,81),(11,125,46,82),(12,126,47,83),(13,115,132,78),(14,116,127,73),(15,117,128,74),(16,118,129,75),(17,119,130,76),(18,120,131,77),(25,85,68,110),(26,86,69,111),(27,87,70,112),(28,88,71,113),(29,89,72,114),(30,90,67,109),(31,91,134,49),(32,92,135,50),(33,93,136,51),(34,94,137,52),(35,95,138,53),(36,96,133,54),(37,141,56,104),(38,142,57,105),(39,143,58,106),(40,144,59,107),(41,139,60,108),(42,140,55,103)], [(1,75,139),(2,76,140),(3,77,141),(4,78,142),(5,73,143),(6,74,144),(7,55,138),(8,56,133),(9,57,134),(10,58,135),(11,59,136),(12,60,137),(13,88,49),(14,89,50),(15,90,51),(16,85,52),(17,86,53),(18,87,54),(19,126,25),(20,121,26),(21,122,27),(22,123,28),(23,124,29),(24,125,30),(31,44,38),(32,45,39),(33,46,40),(34,47,41),(35,48,42),(36,43,37),(61,82,67),(62,83,68),(63,84,69),(64,79,70),(65,80,71),(66,81,72),(91,132,113),(92,127,114),(93,128,109),(94,129,110),(95,130,111),(96,131,112),(97,118,108),(98,119,103),(99,120,104),(100,115,105),(101,116,106),(102,117,107)]])

126 conjugacy classes

class 1 2A2B2C3A···3H3I···3Z4A4B6A···6X6Y···6BZ12A···12P
order12223···33···3446···66···612···12
size11111···14···4661···14···46···6

126 irreducible representations

dim1111112223333
type++-++
imageC1C2C3C3C6C6SL2(𝔽3)SL2(𝔽3)C3×SL2(𝔽3)A4C2×A4C3×A4C6×A4
kernelC3×C6×SL2(𝔽3)C32×SL2(𝔽3)C6×SL2(𝔽3)Q8×C3×C6C3×SL2(𝔽3)Q8×C32C3×C6C3×C6C6C62C3×C6C2×C6C6
# reps1124224224481188

Matrix representation of C3×C6×SL2(𝔽3) in GL3(𝔽13) generated by

300
030
003
,
400
030
003
,
100
0410
0109
,
100
0012
010
,
300
090
0123
G:=sub<GL(3,GF(13))| [3,0,0,0,3,0,0,0,3],[4,0,0,0,3,0,0,0,3],[1,0,0,0,4,10,0,10,9],[1,0,0,0,0,1,0,12,0],[3,0,0,0,9,12,0,0,3] >;

C3×C6×SL2(𝔽3) in GAP, Magma, Sage, TeX

C_3\times C_6\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C3xC6xSL(2,3)");
// GroupNames label

G:=SmallGroup(432,698);
// by ID

G=gap.SmallGroup(432,698);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1901,172,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^4=e^3=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,e*c*e^-1=d,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽