Copied to
clipboard

G = He32C16order 432 = 24·33

The semidirect product of He3 and C16 acting via C16/C4=C4

non-abelian, soluble

Aliases: He32C16, C4.2(He3⋊C4), C2.(He32C8), (C2×He3).2C8, (C4×He3).1C4, C12.7(C32⋊C4), C3.(C322C16), He34C8.1C2, C6.2(C322C8), SmallGroup(432,57)

Series: Derived Chief Lower central Upper central

C1C3He3 — He32C16
C1C3He3C2×He3C4×He3He34C8 — He32C16
He3 — He32C16
C1C12

Generators and relations for He32C16
 G = < a,b,c,d | a3=b3=c3=d16=1, ab=ba, cac-1=ab-1, dad-1=abc, bc=cb, bd=db, dcd-1=ac-1 >

6C3
6C3
6C6
6C6
2C32
2C32
9C8
6C12
6C12
2C3×C6
2C3×C6
9C16
6C3⋊C8
6C3⋊C8
9C24
2C3×C12
2C3×C12
9C48
6C3×C3⋊C8
6C3×C3⋊C8

Smallest permutation representation of He32C16
On 144 points
Generators in S144
(2 118 67)(3 97 58)(4 95 32)(6 122 71)(7 101 62)(8 83 20)(10 126 75)(11 105 50)(12 87 24)(14 114 79)(15 109 54)(16 91 28)(17 139 121)(18 38 61)(19 141 123)(21 143 125)(22 42 49)(23 129 127)(25 131 113)(26 46 53)(27 133 115)(29 135 117)(30 34 57)(31 137 119)(33 66 92)(36 120 98)(37 70 96)(40 124 102)(41 74 84)(44 128 106)(45 78 88)(48 116 110)(51 77 130)(55 65 134)(59 69 138)(63 73 142)(81 100 140)(85 104 144)(89 108 132)(93 112 136)
(1 111 56)(2 112 57)(3 97 58)(4 98 59)(5 99 60)(6 100 61)(7 101 62)(8 102 63)(9 103 64)(10 104 49)(11 105 50)(12 106 51)(13 107 52)(14 108 53)(15 109 54)(16 110 55)(17 121 139)(18 122 140)(19 123 141)(20 124 142)(21 125 143)(22 126 144)(23 127 129)(24 128 130)(25 113 131)(26 114 132)(27 115 133)(28 116 134)(29 117 135)(30 118 136)(31 119 137)(32 120 138)(33 66 92)(34 67 93)(35 68 94)(36 69 95)(37 70 96)(38 71 81)(39 72 82)(40 73 83)(41 74 84)(42 75 85)(43 76 86)(44 77 87)(45 78 88)(46 79 89)(47 80 90)(48 65 91)
(1 29 33)(2 34 118)(3 35 31)(4 120 36)(5 17 37)(6 38 122)(7 39 19)(8 124 40)(9 21 41)(10 42 126)(11 43 23)(12 128 44)(13 25 45)(14 46 114)(15 47 27)(16 116 48)(18 61 81)(20 83 63)(22 49 85)(24 87 51)(26 53 89)(28 91 55)(30 57 93)(32 95 59)(50 86 129)(52 131 88)(54 90 133)(56 135 92)(58 94 137)(60 139 96)(62 82 141)(64 143 84)(65 110 134)(66 111 117)(67 136 112)(68 119 97)(69 98 138)(70 99 121)(71 140 100)(72 123 101)(73 102 142)(74 103 125)(75 144 104)(76 127 105)(77 106 130)(78 107 113)(79 132 108)(80 115 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (2,118,67)(3,97,58)(4,95,32)(6,122,71)(7,101,62)(8,83,20)(10,126,75)(11,105,50)(12,87,24)(14,114,79)(15,109,54)(16,91,28)(17,139,121)(18,38,61)(19,141,123)(21,143,125)(22,42,49)(23,129,127)(25,131,113)(26,46,53)(27,133,115)(29,135,117)(30,34,57)(31,137,119)(33,66,92)(36,120,98)(37,70,96)(40,124,102)(41,74,84)(44,128,106)(45,78,88)(48,116,110)(51,77,130)(55,65,134)(59,69,138)(63,73,142)(81,100,140)(85,104,144)(89,108,132)(93,112,136), (1,111,56)(2,112,57)(3,97,58)(4,98,59)(5,99,60)(6,100,61)(7,101,62)(8,102,63)(9,103,64)(10,104,49)(11,105,50)(12,106,51)(13,107,52)(14,108,53)(15,109,54)(16,110,55)(17,121,139)(18,122,140)(19,123,141)(20,124,142)(21,125,143)(22,126,144)(23,127,129)(24,128,130)(25,113,131)(26,114,132)(27,115,133)(28,116,134)(29,117,135)(30,118,136)(31,119,137)(32,120,138)(33,66,92)(34,67,93)(35,68,94)(36,69,95)(37,70,96)(38,71,81)(39,72,82)(40,73,83)(41,74,84)(42,75,85)(43,76,86)(44,77,87)(45,78,88)(46,79,89)(47,80,90)(48,65,91), (1,29,33)(2,34,118)(3,35,31)(4,120,36)(5,17,37)(6,38,122)(7,39,19)(8,124,40)(9,21,41)(10,42,126)(11,43,23)(12,128,44)(13,25,45)(14,46,114)(15,47,27)(16,116,48)(18,61,81)(20,83,63)(22,49,85)(24,87,51)(26,53,89)(28,91,55)(30,57,93)(32,95,59)(50,86,129)(52,131,88)(54,90,133)(56,135,92)(58,94,137)(60,139,96)(62,82,141)(64,143,84)(65,110,134)(66,111,117)(67,136,112)(68,119,97)(69,98,138)(70,99,121)(71,140,100)(72,123,101)(73,102,142)(74,103,125)(75,144,104)(76,127,105)(77,106,130)(78,107,113)(79,132,108)(80,115,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (2,118,67)(3,97,58)(4,95,32)(6,122,71)(7,101,62)(8,83,20)(10,126,75)(11,105,50)(12,87,24)(14,114,79)(15,109,54)(16,91,28)(17,139,121)(18,38,61)(19,141,123)(21,143,125)(22,42,49)(23,129,127)(25,131,113)(26,46,53)(27,133,115)(29,135,117)(30,34,57)(31,137,119)(33,66,92)(36,120,98)(37,70,96)(40,124,102)(41,74,84)(44,128,106)(45,78,88)(48,116,110)(51,77,130)(55,65,134)(59,69,138)(63,73,142)(81,100,140)(85,104,144)(89,108,132)(93,112,136), (1,111,56)(2,112,57)(3,97,58)(4,98,59)(5,99,60)(6,100,61)(7,101,62)(8,102,63)(9,103,64)(10,104,49)(11,105,50)(12,106,51)(13,107,52)(14,108,53)(15,109,54)(16,110,55)(17,121,139)(18,122,140)(19,123,141)(20,124,142)(21,125,143)(22,126,144)(23,127,129)(24,128,130)(25,113,131)(26,114,132)(27,115,133)(28,116,134)(29,117,135)(30,118,136)(31,119,137)(32,120,138)(33,66,92)(34,67,93)(35,68,94)(36,69,95)(37,70,96)(38,71,81)(39,72,82)(40,73,83)(41,74,84)(42,75,85)(43,76,86)(44,77,87)(45,78,88)(46,79,89)(47,80,90)(48,65,91), (1,29,33)(2,34,118)(3,35,31)(4,120,36)(5,17,37)(6,38,122)(7,39,19)(8,124,40)(9,21,41)(10,42,126)(11,43,23)(12,128,44)(13,25,45)(14,46,114)(15,47,27)(16,116,48)(18,61,81)(20,83,63)(22,49,85)(24,87,51)(26,53,89)(28,91,55)(30,57,93)(32,95,59)(50,86,129)(52,131,88)(54,90,133)(56,135,92)(58,94,137)(60,139,96)(62,82,141)(64,143,84)(65,110,134)(66,111,117)(67,136,112)(68,119,97)(69,98,138)(70,99,121)(71,140,100)(72,123,101)(73,102,142)(74,103,125)(75,144,104)(76,127,105)(77,106,130)(78,107,113)(79,132,108)(80,115,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(2,118,67),(3,97,58),(4,95,32),(6,122,71),(7,101,62),(8,83,20),(10,126,75),(11,105,50),(12,87,24),(14,114,79),(15,109,54),(16,91,28),(17,139,121),(18,38,61),(19,141,123),(21,143,125),(22,42,49),(23,129,127),(25,131,113),(26,46,53),(27,133,115),(29,135,117),(30,34,57),(31,137,119),(33,66,92),(36,120,98),(37,70,96),(40,124,102),(41,74,84),(44,128,106),(45,78,88),(48,116,110),(51,77,130),(55,65,134),(59,69,138),(63,73,142),(81,100,140),(85,104,144),(89,108,132),(93,112,136)], [(1,111,56),(2,112,57),(3,97,58),(4,98,59),(5,99,60),(6,100,61),(7,101,62),(8,102,63),(9,103,64),(10,104,49),(11,105,50),(12,106,51),(13,107,52),(14,108,53),(15,109,54),(16,110,55),(17,121,139),(18,122,140),(19,123,141),(20,124,142),(21,125,143),(22,126,144),(23,127,129),(24,128,130),(25,113,131),(26,114,132),(27,115,133),(28,116,134),(29,117,135),(30,118,136),(31,119,137),(32,120,138),(33,66,92),(34,67,93),(35,68,94),(36,69,95),(37,70,96),(38,71,81),(39,72,82),(40,73,83),(41,74,84),(42,75,85),(43,76,86),(44,77,87),(45,78,88),(46,79,89),(47,80,90),(48,65,91)], [(1,29,33),(2,34,118),(3,35,31),(4,120,36),(5,17,37),(6,38,122),(7,39,19),(8,124,40),(9,21,41),(10,42,126),(11,43,23),(12,128,44),(13,25,45),(14,46,114),(15,47,27),(16,116,48),(18,61,81),(20,83,63),(22,49,85),(24,87,51),(26,53,89),(28,91,55),(30,57,93),(32,95,59),(50,86,129),(52,131,88),(54,90,133),(56,135,92),(58,94,137),(60,139,96),(62,82,141),(64,143,84),(65,110,134),(66,111,117),(67,136,112),(68,119,97),(69,98,138),(70,99,121),(71,140,100),(72,123,101),(73,102,142),(74,103,125),(75,144,104),(76,127,105),(77,106,130),(78,107,113),(79,132,108),(80,115,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

56 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D8A8B8C8D12A12B12C12D12E12F12G12H16A···16H24A···24H48A···48P
order1233334466668888121212121212121216···1624···2448···48
size111112121111121299991111121212129···99···99···9

56 irreducible representations

dim11111333444
type+++-
imageC1C2C4C8C16He3⋊C4He32C8He32C16C32⋊C4C322C8C322C16
kernelHe32C16He34C8C4×He3C2×He3He3C4C2C1C12C6C3
# reps112488816224

Matrix representation of He32C16 in GL4(𝔽97) generated by

1000
0100
00610
00035
,
1000
06100
00610
00061
,
1000
0010
0001
0100
,
18000
0777676
0767776
0777741
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,61,0,0,0,0,35],[1,0,0,0,0,61,0,0,0,0,61,0,0,0,0,61],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0],[18,0,0,0,0,77,76,77,0,76,77,77,0,76,76,41] >;

He32C16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_2C_{16}
% in TeX

G:=Group("He3:2C16");
// GroupNames label

G:=SmallGroup(432,57);
// by ID

G=gap.SmallGroup(432,57);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,14,36,58,3924,571,5381,5052,537]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^16=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of He32C16 in TeX

׿
×
𝔽