Extensions 1→N→G→Q→1 with N=C2×He3 and Q=C8

Direct product G=N×Q with N=C2×He3 and Q=C8
dρLabelID
C2×C8×He3144C2xC8xHe3432,210

Semidirect products G=N:Q with N=C2×He3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊C8 = C2×He3⋊C8φ: C8/C1C8 ⊆ Out C2×He3546+(C2xHe3):C8432,529
(C2×He3)⋊2C8 = C2×He32C8φ: C8/C2C4 ⊆ Out C2×He3144(C2xHe3):2C8432,277
(C2×He3)⋊3C8 = C2×He33C8φ: C8/C4C2 ⊆ Out C2×He3144(C2xHe3):3C8432,136
(C2×He3)⋊4C8 = C2×He34C8φ: C8/C4C2 ⊆ Out C2×He3144(C2xHe3):4C8432,184

Non-split extensions G=N.Q with N=C2×He3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2×He3).C8 = He3⋊C16φ: C8/C1C8 ⊆ Out C2×He31446(C2xHe3).C8432,233
(C2×He3).2C8 = He32C16φ: C8/C2C4 ⊆ Out C2×He31443(C2xHe3).2C8432,57
(C2×He3).3C8 = He33C16φ: C8/C4C2 ⊆ Out C2×He31446(C2xHe3).3C8432,30
(C2×He3).4C8 = He34C16φ: C8/C4C2 ⊆ Out C2×He31443(C2xHe3).4C8432,33
(C2×He3).5C8 = C16×He3φ: trivial image1443(C2xHe3).5C8432,35

׿
×
𝔽