Extensions 1→N→G→Q→1 with N=C3xC9 and Q=SD16

Direct product G=NxQ with N=C3xC9 and Q=SD16
dρLabelID
SD16xC3xC9216SD16xC3xC9432,218

Semidirect products G=N:Q with N=C3xC9 and Q=SD16
extensionφ:Q→Aut NdρLabelID
(C3xC9):1SD16 = D36.S3φ: SD16/C4C22 ⊆ Aut C3xC91444-(C3xC9):1SD16432,62
(C3xC9):2SD16 = C6.D36φ: SD16/C4C22 ⊆ Aut C3xC9724+(C3xC9):2SD16432,63
(C3xC9):3SD16 = D12.D9φ: SD16/C4C22 ⊆ Aut C3xC91444(C3xC9):3SD16432,70
(C3xC9):4SD16 = C36.D6φ: SD16/C4C22 ⊆ Aut C3xC91444-(C3xC9):4SD16432,71
(C3xC9):5SD16 = Dic6:D9φ: SD16/C4C22 ⊆ Aut C3xC91444(C3xC9):5SD16432,72
(C3xC9):6SD16 = C18.D12φ: SD16/C4C22 ⊆ Aut C3xC9724+(C3xC9):6SD16432,73
(C3xC9):7SD16 = C9xC24:C2φ: SD16/C8C2 ⊆ Aut C3xC91442(C3xC9):7SD16432,111
(C3xC9):8SD16 = C3xC72:C2φ: SD16/C8C2 ⊆ Aut C3xC91442(C3xC9):8SD16432,107
(C3xC9):9SD16 = C24:D9φ: SD16/C8C2 ⊆ Aut C3xC9216(C3xC9):9SD16432,171
(C3xC9):10SD16 = C9xD4.S3φ: SD16/D4C2 ⊆ Aut C3xC9724(C3xC9):10SD16432,151
(C3xC9):11SD16 = C3xD4.D9φ: SD16/D4C2 ⊆ Aut C3xC9724(C3xC9):11SD16432,148
(C3xC9):12SD16 = C36.17D6φ: SD16/D4C2 ⊆ Aut C3xC9216(C3xC9):12SD16432,190
(C3xC9):13SD16 = C9xQ8:2S3φ: SD16/Q8C2 ⊆ Aut C3xC91444(C3xC9):13SD16432,158
(C3xC9):14SD16 = C3xQ8:2D9φ: SD16/Q8C2 ⊆ Aut C3xC91444(C3xC9):14SD16432,157
(C3xC9):15SD16 = C36.20D6φ: SD16/Q8C2 ⊆ Aut C3xC9216(C3xC9):15SD16432,195


׿
x
:
Z
F
o
wr
Q
<