Copied to
clipboard

G = D12.D9order 432 = 24·33

2nd non-split extension by D12 of D9 acting via D9/C9=C2

metabelian, supersoluble, monomial

Aliases: D12.2D9, C36.11D6, Dic182S3, C12.14D18, C12.3S32, (C3×C9)⋊3SD16, C4.16(S3×D9), (C3×C18).7D4, C32(D4.D9), (C9×D12).1C2, (C3×D12).3S3, (C3×C12).75D6, C6.9(C9⋊D4), C36.S32C2, C92(Q82S3), (C3×Dic18)⋊5C2, C18.8(C3⋊D4), C2.5(D6⋊D9), (C3×C36).10C22, C6.13(D6⋊S3), C32.2(D4.S3), C3.3(Dic6⋊S3), (C3×C6).43(C3⋊D4), SmallGroup(432,70)

Series: Derived Chief Lower central Upper central

C1C3×C36 — D12.D9
C1C3C32C3×C9C3×C18C3×C36C9×D12 — D12.D9
C3×C9C3×C18C3×C36 — D12.D9
C1C2C4

Generators and relations for D12.D9
 G = < a,b,c,d | a12=b2=c9=1, d2=a6, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 320 in 68 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, SD16, C18, C18, C3×S3, C3×C6, C3⋊C8, Dic6, D12, C3×D4, C3×Q8, C3×C9, Dic9, C36, C36, C2×C18, C3×Dic3, C3×C12, S3×C6, D4.S3, Q82S3, S3×C9, C3×C18, C9⋊C8, Dic18, D4×C9, C324C8, C3×Dic6, C3×D12, C3×Dic9, C3×C36, S3×C18, D4.D9, Dic6⋊S3, C36.S3, C3×Dic18, C9×D12, D12.D9
Quotients: C1, C2, C22, S3, D4, D6, SD16, D9, C3⋊D4, D18, S32, D4.S3, Q82S3, C9⋊D4, D6⋊S3, S3×D9, D4.D9, Dic6⋊S3, D6⋊D9, D12.D9

Smallest permutation representation of D12.D9
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 127)(2 126)(3 125)(4 124)(5 123)(6 122)(7 121)(8 132)(9 131)(10 130)(11 129)(12 128)(13 57)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 60)(23 59)(24 58)(25 110)(26 109)(27 120)(28 119)(29 118)(30 117)(31 116)(32 115)(33 114)(34 113)(35 112)(36 111)(37 75)(38 74)(39 73)(40 84)(41 83)(42 82)(43 81)(44 80)(45 79)(46 78)(47 77)(48 76)(61 104)(62 103)(63 102)(64 101)(65 100)(66 99)(67 98)(68 97)(69 108)(70 107)(71 106)(72 105)(85 141)(86 140)(87 139)(88 138)(89 137)(90 136)(91 135)(92 134)(93 133)(94 144)(95 143)(96 142)
(1 43 99 9 39 107 5 47 103)(2 44 100 10 40 108 6 48 104)(3 45 101 11 41 97 7 37 105)(4 46 102 12 42 98 8 38 106)(13 110 137 21 118 133 17 114 141)(14 111 138 22 119 134 18 115 142)(15 112 139 23 120 135 19 116 143)(16 113 140 24 109 136 20 117 144)(25 89 49 29 93 53 33 85 57)(26 90 50 30 94 54 34 86 58)(27 91 51 31 95 55 35 87 59)(28 92 52 32 96 56 36 88 60)(61 126 80 65 130 84 69 122 76)(62 127 81 66 131 73 70 123 77)(63 128 82 67 132 74 71 124 78)(64 129 83 68 121 75 72 125 79)
(1 55 7 49)(2 50 8 56)(3 57 9 51)(4 52 10 58)(5 59 11 53)(6 54 12 60)(13 128 19 122)(14 123 20 129)(15 130 21 124)(16 125 22 131)(17 132 23 126)(18 127 24 121)(25 99 31 105)(26 106 32 100)(27 101 33 107)(28 108 34 102)(29 103 35 97)(30 98 36 104)(37 89 43 95)(38 96 44 90)(39 91 45 85)(40 86 46 92)(41 93 47 87)(42 88 48 94)(61 114 67 120)(62 109 68 115)(63 116 69 110)(64 111 70 117)(65 118 71 112)(66 113 72 119)(73 144 79 138)(74 139 80 133)(75 134 81 140)(76 141 82 135)(77 136 83 142)(78 143 84 137)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,127)(2,126)(3,125)(4,124)(5,123)(6,122)(7,121)(8,132)(9,131)(10,130)(11,129)(12,128)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,110)(26,109)(27,120)(28,119)(29,118)(30,117)(31,116)(32,115)(33,114)(34,113)(35,112)(36,111)(37,75)(38,74)(39,73)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,108)(70,107)(71,106)(72,105)(85,141)(86,140)(87,139)(88,138)(89,137)(90,136)(91,135)(92,134)(93,133)(94,144)(95,143)(96,142), (1,43,99,9,39,107,5,47,103)(2,44,100,10,40,108,6,48,104)(3,45,101,11,41,97,7,37,105)(4,46,102,12,42,98,8,38,106)(13,110,137,21,118,133,17,114,141)(14,111,138,22,119,134,18,115,142)(15,112,139,23,120,135,19,116,143)(16,113,140,24,109,136,20,117,144)(25,89,49,29,93,53,33,85,57)(26,90,50,30,94,54,34,86,58)(27,91,51,31,95,55,35,87,59)(28,92,52,32,96,56,36,88,60)(61,126,80,65,130,84,69,122,76)(62,127,81,66,131,73,70,123,77)(63,128,82,67,132,74,71,124,78)(64,129,83,68,121,75,72,125,79), (1,55,7,49)(2,50,8,56)(3,57,9,51)(4,52,10,58)(5,59,11,53)(6,54,12,60)(13,128,19,122)(14,123,20,129)(15,130,21,124)(16,125,22,131)(17,132,23,126)(18,127,24,121)(25,99,31,105)(26,106,32,100)(27,101,33,107)(28,108,34,102)(29,103,35,97)(30,98,36,104)(37,89,43,95)(38,96,44,90)(39,91,45,85)(40,86,46,92)(41,93,47,87)(42,88,48,94)(61,114,67,120)(62,109,68,115)(63,116,69,110)(64,111,70,117)(65,118,71,112)(66,113,72,119)(73,144,79,138)(74,139,80,133)(75,134,81,140)(76,141,82,135)(77,136,83,142)(78,143,84,137)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,127)(2,126)(3,125)(4,124)(5,123)(6,122)(7,121)(8,132)(9,131)(10,130)(11,129)(12,128)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,110)(26,109)(27,120)(28,119)(29,118)(30,117)(31,116)(32,115)(33,114)(34,113)(35,112)(36,111)(37,75)(38,74)(39,73)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,108)(70,107)(71,106)(72,105)(85,141)(86,140)(87,139)(88,138)(89,137)(90,136)(91,135)(92,134)(93,133)(94,144)(95,143)(96,142), (1,43,99,9,39,107,5,47,103)(2,44,100,10,40,108,6,48,104)(3,45,101,11,41,97,7,37,105)(4,46,102,12,42,98,8,38,106)(13,110,137,21,118,133,17,114,141)(14,111,138,22,119,134,18,115,142)(15,112,139,23,120,135,19,116,143)(16,113,140,24,109,136,20,117,144)(25,89,49,29,93,53,33,85,57)(26,90,50,30,94,54,34,86,58)(27,91,51,31,95,55,35,87,59)(28,92,52,32,96,56,36,88,60)(61,126,80,65,130,84,69,122,76)(62,127,81,66,131,73,70,123,77)(63,128,82,67,132,74,71,124,78)(64,129,83,68,121,75,72,125,79), (1,55,7,49)(2,50,8,56)(3,57,9,51)(4,52,10,58)(5,59,11,53)(6,54,12,60)(13,128,19,122)(14,123,20,129)(15,130,21,124)(16,125,22,131)(17,132,23,126)(18,127,24,121)(25,99,31,105)(26,106,32,100)(27,101,33,107)(28,108,34,102)(29,103,35,97)(30,98,36,104)(37,89,43,95)(38,96,44,90)(39,91,45,85)(40,86,46,92)(41,93,47,87)(42,88,48,94)(61,114,67,120)(62,109,68,115)(63,116,69,110)(64,111,70,117)(65,118,71,112)(66,113,72,119)(73,144,79,138)(74,139,80,133)(75,134,81,140)(76,141,82,135)(77,136,83,142)(78,143,84,137) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,127),(2,126),(3,125),(4,124),(5,123),(6,122),(7,121),(8,132),(9,131),(10,130),(11,129),(12,128),(13,57),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,60),(23,59),(24,58),(25,110),(26,109),(27,120),(28,119),(29,118),(30,117),(31,116),(32,115),(33,114),(34,113),(35,112),(36,111),(37,75),(38,74),(39,73),(40,84),(41,83),(42,82),(43,81),(44,80),(45,79),(46,78),(47,77),(48,76),(61,104),(62,103),(63,102),(64,101),(65,100),(66,99),(67,98),(68,97),(69,108),(70,107),(71,106),(72,105),(85,141),(86,140),(87,139),(88,138),(89,137),(90,136),(91,135),(92,134),(93,133),(94,144),(95,143),(96,142)], [(1,43,99,9,39,107,5,47,103),(2,44,100,10,40,108,6,48,104),(3,45,101,11,41,97,7,37,105),(4,46,102,12,42,98,8,38,106),(13,110,137,21,118,133,17,114,141),(14,111,138,22,119,134,18,115,142),(15,112,139,23,120,135,19,116,143),(16,113,140,24,109,136,20,117,144),(25,89,49,29,93,53,33,85,57),(26,90,50,30,94,54,34,86,58),(27,91,51,31,95,55,35,87,59),(28,92,52,32,96,56,36,88,60),(61,126,80,65,130,84,69,122,76),(62,127,81,66,131,73,70,123,77),(63,128,82,67,132,74,71,124,78),(64,129,83,68,121,75,72,125,79)], [(1,55,7,49),(2,50,8,56),(3,57,9,51),(4,52,10,58),(5,59,11,53),(6,54,12,60),(13,128,19,122),(14,123,20,129),(15,130,21,124),(16,125,22,131),(17,132,23,126),(18,127,24,121),(25,99,31,105),(26,106,32,100),(27,101,33,107),(28,108,34,102),(29,103,35,97),(30,98,36,104),(37,89,43,95),(38,96,44,90),(39,91,45,85),(40,86,46,92),(41,93,47,87),(42,88,48,94),(61,114,67,120),(62,109,68,115),(63,116,69,110),(64,111,70,117),(65,118,71,112),(66,113,72,119),(73,144,79,138),(74,139,80,133),(75,134,81,140),(76,141,82,135),(77,136,83,142),(78,143,84,137)]])

48 conjugacy classes

class 1 2A2B3A3B3C4A4B6A6B6C6D6E8A8B9A9B9C9D9E9F12A12B12C12D12E12F18A18B18C18D18E18F18G···18L36A···36I
order12233344666668899999912121212121218181818181818···1836···36
size1112224236224121254542224444444363622244412···124···4

48 irreducible representations

dim111122222222222444444444
type+++++++++++++--+--
imageC1C2C2C2S3S3D4D6D6SD16D9C3⋊D4C3⋊D4D18C9⋊D4S32Q82S3D4.S3D6⋊S3S3×D9D4.D9Dic6⋊S3D6⋊D9D12.D9
kernelD12.D9C36.S3C3×Dic18C9×D12Dic18C3×D12C3×C18C36C3×C12C3×C9D12C18C3×C6C12C6C12C9C32C6C4C3C3C2C1
# reps111111111232236111133236

Matrix representation of D12.D9 in GL6(𝔽73)

6930000
4340000
0017200
001000
0000720
0000072
,
2010000
39530000
0028300
00314500
00004313
00006030
,
100000
010000
001000
000100
00007028
00004542
,
50600000
52230000
00301300
00604300
00004425
00005429

G:=sub<GL(6,GF(73))| [69,43,0,0,0,0,3,4,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[20,39,0,0,0,0,1,53,0,0,0,0,0,0,28,31,0,0,0,0,3,45,0,0,0,0,0,0,43,60,0,0,0,0,13,30],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,70,45,0,0,0,0,28,42],[50,52,0,0,0,0,60,23,0,0,0,0,0,0,30,60,0,0,0,0,13,43,0,0,0,0,0,0,44,54,0,0,0,0,25,29] >;

D12.D9 in GAP, Magma, Sage, TeX

D_{12}.D_9
% in TeX

G:=Group("D12.D9");
// GroupNames label

G:=SmallGroup(432,70);
// by ID

G=gap.SmallGroup(432,70);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,64,254,135,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^9=1,d^2=a^6,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽