metabelian, supersoluble, monomial
Aliases: D12.1D9, C36.12D6, C12.31D18, C18.13D12, C9⋊C8⋊2S3, C12.4S32, C4.2(S3×D9), (C3×C9)⋊4SD16, (C3×C18).8D4, C9⋊3(C24⋊C2), C3⋊1(D4.D9), (C9×D12).2C2, (C3×D12).4S3, (C3×C12).76D6, C6.2(C9⋊D4), C12.D9⋊5C2, C2.5(C9⋊D12), (C3×C36).11C22, C6.15(C3⋊D12), C32.3(D4.S3), C3.2(D12.S3), (C3×C9⋊C8)⋊2C2, (C3×C6).44(C3⋊D4), SmallGroup(432,71)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C36.D6
G = < a,b,c | a36=1, b6=a27, c2=a18, bab-1=a17, cac-1=a-1, cbc-1=a27b5 >
Subgroups: 420 in 72 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, SD16, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×C9, Dic9, C36, C36, C2×C18, C3⋊Dic3, C3×C12, S3×C6, C24⋊C2, D4.S3, S3×C9, C3×C18, C9⋊C8, Dic18, D4×C9, C3×C3⋊C8, C3×D12, C32⋊4Q8, C9⋊Dic3, C3×C36, S3×C18, D4.D9, D12.S3, C3×C9⋊C8, C9×D12, C12.D9, C36.D6
Quotients: C1, C2, C22, S3, D4, D6, SD16, D9, D12, C3⋊D4, D18, S32, C24⋊C2, D4.S3, C9⋊D4, C3⋊D12, S3×D9, D4.D9, D12.S3, C9⋊D12, C36.D6
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 49 22 46 7 43 28 40 13 37 34 70 19 67 4 64 25 61 10 58 31 55 16 52)(2 66 23 63 8 60 29 57 14 54 35 51 20 48 5 45 26 42 11 39 32 72 17 69)(3 47 24 44 9 41 30 38 15 71 36 68 21 65 6 62 27 59 12 56 33 53 18 50)(73 115 106 136 103 121 100 142 97 127 94 112 91 133 88 118 85 139 82 124 79 109 76 130)(74 132 107 117 104 138 101 123 98 144 95 129 92 114 89 135 86 120 83 141 80 126 77 111)(75 113 108 134 105 119 102 140 99 125 96 110 93 131 90 116 87 137 84 122 81 143 78 128)
(1 130 19 112)(2 129 20 111)(3 128 21 110)(4 127 22 109)(5 126 23 144)(6 125 24 143)(7 124 25 142)(8 123 26 141)(9 122 27 140)(10 121 28 139)(11 120 29 138)(12 119 30 137)(13 118 31 136)(14 117 32 135)(15 116 33 134)(16 115 34 133)(17 114 35 132)(18 113 36 131)(37 106 55 88)(38 105 56 87)(39 104 57 86)(40 103 58 85)(41 102 59 84)(42 101 60 83)(43 100 61 82)(44 99 62 81)(45 98 63 80)(46 97 64 79)(47 96 65 78)(48 95 66 77)(49 94 67 76)(50 93 68 75)(51 92 69 74)(52 91 70 73)(53 90 71 108)(54 89 72 107)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,49,22,46,7,43,28,40,13,37,34,70,19,67,4,64,25,61,10,58,31,55,16,52)(2,66,23,63,8,60,29,57,14,54,35,51,20,48,5,45,26,42,11,39,32,72,17,69)(3,47,24,44,9,41,30,38,15,71,36,68,21,65,6,62,27,59,12,56,33,53,18,50)(73,115,106,136,103,121,100,142,97,127,94,112,91,133,88,118,85,139,82,124,79,109,76,130)(74,132,107,117,104,138,101,123,98,144,95,129,92,114,89,135,86,120,83,141,80,126,77,111)(75,113,108,134,105,119,102,140,99,125,96,110,93,131,90,116,87,137,84,122,81,143,78,128), (1,130,19,112)(2,129,20,111)(3,128,21,110)(4,127,22,109)(5,126,23,144)(6,125,24,143)(7,124,25,142)(8,123,26,141)(9,122,27,140)(10,121,28,139)(11,120,29,138)(12,119,30,137)(13,118,31,136)(14,117,32,135)(15,116,33,134)(16,115,34,133)(17,114,35,132)(18,113,36,131)(37,106,55,88)(38,105,56,87)(39,104,57,86)(40,103,58,85)(41,102,59,84)(42,101,60,83)(43,100,61,82)(44,99,62,81)(45,98,63,80)(46,97,64,79)(47,96,65,78)(48,95,66,77)(49,94,67,76)(50,93,68,75)(51,92,69,74)(52,91,70,73)(53,90,71,108)(54,89,72,107)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,49,22,46,7,43,28,40,13,37,34,70,19,67,4,64,25,61,10,58,31,55,16,52)(2,66,23,63,8,60,29,57,14,54,35,51,20,48,5,45,26,42,11,39,32,72,17,69)(3,47,24,44,9,41,30,38,15,71,36,68,21,65,6,62,27,59,12,56,33,53,18,50)(73,115,106,136,103,121,100,142,97,127,94,112,91,133,88,118,85,139,82,124,79,109,76,130)(74,132,107,117,104,138,101,123,98,144,95,129,92,114,89,135,86,120,83,141,80,126,77,111)(75,113,108,134,105,119,102,140,99,125,96,110,93,131,90,116,87,137,84,122,81,143,78,128), (1,130,19,112)(2,129,20,111)(3,128,21,110)(4,127,22,109)(5,126,23,144)(6,125,24,143)(7,124,25,142)(8,123,26,141)(9,122,27,140)(10,121,28,139)(11,120,29,138)(12,119,30,137)(13,118,31,136)(14,117,32,135)(15,116,33,134)(16,115,34,133)(17,114,35,132)(18,113,36,131)(37,106,55,88)(38,105,56,87)(39,104,57,86)(40,103,58,85)(41,102,59,84)(42,101,60,83)(43,100,61,82)(44,99,62,81)(45,98,63,80)(46,97,64,79)(47,96,65,78)(48,95,66,77)(49,94,67,76)(50,93,68,75)(51,92,69,74)(52,91,70,73)(53,90,71,108)(54,89,72,107) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,49,22,46,7,43,28,40,13,37,34,70,19,67,4,64,25,61,10,58,31,55,16,52),(2,66,23,63,8,60,29,57,14,54,35,51,20,48,5,45,26,42,11,39,32,72,17,69),(3,47,24,44,9,41,30,38,15,71,36,68,21,65,6,62,27,59,12,56,33,53,18,50),(73,115,106,136,103,121,100,142,97,127,94,112,91,133,88,118,85,139,82,124,79,109,76,130),(74,132,107,117,104,138,101,123,98,144,95,129,92,114,89,135,86,120,83,141,80,126,77,111),(75,113,108,134,105,119,102,140,99,125,96,110,93,131,90,116,87,137,84,122,81,143,78,128)], [(1,130,19,112),(2,129,20,111),(3,128,21,110),(4,127,22,109),(5,126,23,144),(6,125,24,143),(7,124,25,142),(8,123,26,141),(9,122,27,140),(10,121,28,139),(11,120,29,138),(12,119,30,137),(13,118,31,136),(14,117,32,135),(15,116,33,134),(16,115,34,133),(17,114,35,132),(18,113,36,131),(37,106,55,88),(38,105,56,87),(39,104,57,86),(40,103,58,85),(41,102,59,84),(42,101,60,83),(43,100,61,82),(44,99,62,81),(45,98,63,80),(46,97,64,79),(47,96,65,78),(48,95,66,77),(49,94,67,76),(50,93,68,75),(51,92,69,74),(52,91,70,73),(53,90,71,108),(54,89,72,107)]])
51 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 18A | 18B | 18C | 18D | 18E | 18F | 18G | ··· | 18L | 24A | 24B | 24C | 24D | 36A | ··· | 36I |
order | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | ··· | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 |
size | 1 | 1 | 12 | 2 | 2 | 4 | 2 | 108 | 2 | 2 | 4 | 12 | 12 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 18 | 18 | 18 | 18 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | - | + | - | ||||
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | SD16 | D9 | D12 | C3⋊D4 | D18 | C24⋊C2 | C9⋊D4 | S32 | D4.S3 | C3⋊D12 | S3×D9 | D4.D9 | D12.S3 | C9⋊D12 | C36.D6 |
kernel | C36.D6 | C3×C9⋊C8 | C9×D12 | C12.D9 | C9⋊C8 | C3×D12 | C3×C18 | C36 | C3×C12 | C3×C9 | D12 | C18 | C3×C6 | C12 | C9 | C6 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 4 | 6 | 1 | 1 | 1 | 3 | 3 | 2 | 3 | 6 |
Matrix representation of C36.D6 ►in GL6(𝔽73)
7 | 30 | 0 | 0 | 0 | 0 |
47 | 66 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 70 | 59 |
0 | 0 | 0 | 0 | 56 | 42 |
36 | 34 | 0 | 0 | 0 | 0 |
63 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 71 | 1 |
12 | 68 | 0 | 0 | 0 | 0 |
29 | 61 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 72 |
G:=sub<GL(6,GF(73))| [7,47,0,0,0,0,30,66,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,70,56,0,0,0,0,59,42],[36,63,0,0,0,0,34,25,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,72,71,0,0,0,0,0,1],[12,29,0,0,0,0,68,61,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,1,2,0,0,0,0,0,72] >;
C36.D6 in GAP, Magma, Sage, TeX
C_{36}.D_6
% in TeX
G:=Group("C36.D6");
// GroupNames label
G:=SmallGroup(432,71);
// by ID
G=gap.SmallGroup(432,71);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,36,254,58,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c|a^36=1,b^6=a^27,c^2=a^18,b*a*b^-1=a^17,c*a*c^-1=a^-1,c*b*c^-1=a^27*b^5>;
// generators/relations