Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C2×C6

Direct product G=N×Q with N=C3×Dic3 and Q=C2×C6
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C3×Dic3 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1(C2×C6) = C3×S3×C3⋊D4φ: C2×C6/C3C22 ⊆ Out C3×Dic3244(C3xDic3):1(C2xC6)432,658
(C3×Dic3)⋊2(C2×C6) = C3×Dic3⋊D6φ: C2×C6/C3C22 ⊆ Out C3×Dic3244(C3xDic3):2(C2xC6)432,659
(C3×Dic3)⋊3(C2×C6) = C3×S3×D12φ: C2×C6/C6C2 ⊆ Out C3×Dic3484(C3xDic3):3(C2xC6)432,649
(C3×Dic3)⋊4(C2×C6) = C6×C3⋊D12φ: C2×C6/C6C2 ⊆ Out C3×Dic348(C3xDic3):4(C2xC6)432,656
(C3×Dic3)⋊5(C2×C6) = S32×C12φ: C2×C6/C6C2 ⊆ Out C3×Dic3484(C3xDic3):5(C2xC6)432,648
(C3×Dic3)⋊6(C2×C6) = S3×C6×Dic3φ: C2×C6/C6C2 ⊆ Out C3×Dic348(C3xDic3):6(C2xC6)432,651
(C3×Dic3)⋊7(C2×C6) = C6×C6.D6φ: C2×C6/C6C2 ⊆ Out C3×Dic348(C3xDic3):7(C2xC6)432,654
(C3×Dic3)⋊8(C2×C6) = S3×D4×C32φ: C2×C6/C6C2 ⊆ Out C3×Dic372(C3xDic3):8(C2xC6)432,704
(C3×Dic3)⋊9(C2×C6) = C3×C6×C3⋊D4φ: C2×C6/C6C2 ⊆ Out C3×Dic372(C3xDic3):9(C2xC6)432,709
(C3×Dic3)⋊10(C2×C6) = S3×C6×C12φ: trivial image144(C3xDic3):10(C2xC6)432,701

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1(C2×C6) = C3×S3×Dic6φ: C2×C6/C3C22 ⊆ Out C3×Dic3484(C3xDic3).1(C2xC6)432,642
(C3×Dic3).2(C2×C6) = C3×D12⋊S3φ: C2×C6/C3C22 ⊆ Out C3×Dic3484(C3xDic3).2(C2xC6)432,644
(C3×Dic3).3(C2×C6) = C3×Dic3.D6φ: C2×C6/C3C22 ⊆ Out C3×Dic3484(C3xDic3).3(C2xC6)432,645
(C3×Dic3).4(C2×C6) = C3×D6.3D6φ: C2×C6/C3C22 ⊆ Out C3×Dic3244(C3xDic3).4(C2xC6)432,652
(C3×Dic3).5(C2×C6) = C3×D6.4D6φ: C2×C6/C3C22 ⊆ Out C3×Dic3244(C3xDic3).5(C2xC6)432,653
(C3×Dic3).6(C2×C6) = C3×D6.D6φ: C2×C6/C6C2 ⊆ Out C3×Dic3484(C3xDic3).6(C2xC6)432,646
(C3×Dic3).7(C2×C6) = C6×C322Q8φ: C2×C6/C6C2 ⊆ Out C3×Dic348(C3xDic3).7(C2xC6)432,657
(C3×Dic3).8(C2×C6) = C3×D125S3φ: C2×C6/C6C2 ⊆ Out C3×Dic3484(C3xDic3).8(C2xC6)432,643
(C3×Dic3).9(C2×C6) = C3×D6.6D6φ: C2×C6/C6C2 ⊆ Out C3×Dic3484(C3xDic3).9(C2xC6)432,647
(C3×Dic3).10(C2×C6) = C18×Dic6φ: C2×C6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).10(C2xC6)432,341
(C3×Dic3).11(C2×C6) = C9×C4○D12φ: C2×C6/C6C2 ⊆ Out C3×Dic3722(C3xDic3).11(C2xC6)432,347
(C3×Dic3).12(C2×C6) = S3×D4×C9φ: C2×C6/C6C2 ⊆ Out C3×Dic3724(C3xDic3).12(C2xC6)432,358
(C3×Dic3).13(C2×C6) = C9×D42S3φ: C2×C6/C6C2 ⊆ Out C3×Dic3724(C3xDic3).13(C2xC6)432,359
(C3×Dic3).14(C2×C6) = S3×Q8×C9φ: C2×C6/C6C2 ⊆ Out C3×Dic31444(C3xDic3).14(C2xC6)432,366
(C3×Dic3).15(C2×C6) = C18×C3⋊D4φ: C2×C6/C6C2 ⊆ Out C3×Dic372(C3xDic3).15(C2xC6)432,375
(C3×Dic3).16(C2×C6) = C3×C6×Dic6φ: C2×C6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).16(C2xC6)432,700
(C3×Dic3).17(C2×C6) = C32×C4○D12φ: C2×C6/C6C2 ⊆ Out C3×Dic372(C3xDic3).17(C2xC6)432,703
(C3×Dic3).18(C2×C6) = S3×Q8×C32φ: C2×C6/C6C2 ⊆ Out C3×Dic3144(C3xDic3).18(C2xC6)432,706
(C3×Dic3).19(C2×C6) = S3×C2×C36φ: trivial image144(C3xDic3).19(C2xC6)432,345
(C3×Dic3).20(C2×C6) = C9×Q83S3φ: trivial image1444(C3xDic3).20(C2xC6)432,367
(C3×Dic3).21(C2×C6) = Dic3×C2×C18φ: trivial image144(C3xDic3).21(C2xC6)432,373
(C3×Dic3).22(C2×C6) = C32×D42S3φ: trivial image72(C3xDic3).22(C2xC6)432,705
(C3×Dic3).23(C2×C6) = C32×Q83S3φ: trivial image144(C3xDic3).23(C2xC6)432,707

׿
×
𝔽