direct product, metabelian, supersoluble, monomial
Aliases: C3×Dic3.D6, C12.100S32, C33⋊8(C2×Q8), C32⋊5(C6×Q8), C12.38(S3×C6), (C3×Dic6)⋊5S3, (C3×Dic6)⋊6C6, Dic6⋊4(C3×S3), C32⋊2Q8⋊3C6, C32⋊12(S3×Q8), (C3×C12).137D6, Dic3.2(S3×C6), C6.D6.1C6, (C3×Dic3).25D6, (C32×Dic6)⋊8C2, (C32×C6).23C23, (C32×C12).38C22, (C32×Dic3).10C22, C3⋊1(C3×S3×Q8), C2.7(S32×C6), C6.4(S3×C2×C6), C4.12(C3×S32), (C3×C3⋊S3)⋊4Q8, C3⋊S3⋊3(C3×Q8), C6.107(C2×S32), (C4×C3⋊S3).4C6, (C12×C3⋊S3).5C2, (C3×C12).53(C2×C6), (C3×C32⋊2Q8)⋊9C2, (C6×C3⋊S3).45C22, C3⋊Dic3.17(C2×C6), (C3×C6).14(C22×C6), (C3×Dic3).3(C2×C6), (C3×C6.D6).2C2, (C3×C6).128(C22×S3), (C3×C3⋊Dic3).54C22, (C2×C3⋊S3).17(C2×C6), SmallGroup(432,645)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Dic3.D6
G = < a,b,c,d,e | a3=b6=1, c2=d6=e2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=ece-1=b3c, ede-1=b3d5 >
Subgroups: 608 in 198 conjugacy classes, 68 normal (20 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, Q8, C32, C32, C32, Dic3, Dic3, C12, C12, C12, D6, C2×C6, C2×Q8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, Dic6, C4×S3, C2×C12, C3×Q8, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×Q8, C6×Q8, C3×C3⋊S3, C32×C6, C6.D6, C32⋊2Q8, C3×Dic6, C3×Dic6, S3×C12, C4×C3⋊S3, Q8×C32, C32×Dic3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, Dic3.D6, C3×S3×Q8, C3×C6.D6, C3×C32⋊2Q8, C32×Dic6, C12×C3⋊S3, C3×Dic3.D6
Quotients: C1, C2, C3, C22, S3, C6, Q8, C23, D6, C2×C6, C2×Q8, C3×S3, C3×Q8, C22×S3, C22×C6, S32, S3×C6, S3×Q8, C6×Q8, C2×S32, S3×C2×C6, C3×S32, Dic3.D6, C3×S3×Q8, S32×C6, C3×Dic3.D6
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 11 9 7 5 3)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 16 18 20 22 24)(25 27 29 31 33 35)(26 28 30 32 34 36)(37 47 45 43 41 39)(38 48 46 44 42 40)
(1 19 7 13)(2 14 8 20)(3 21 9 15)(4 16 10 22)(5 23 11 17)(6 18 12 24)(25 38 31 44)(26 45 32 39)(27 40 33 46)(28 47 34 41)(29 42 35 48)(30 37 36 43)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 7 27)(2 32 8 26)(3 31 9 25)(4 30 10 36)(5 29 11 35)(6 28 12 34)(13 46 19 40)(14 45 20 39)(15 44 21 38)(16 43 22 37)(17 42 23 48)(18 41 24 47)
G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,19,7,13)(2,14,8,20)(3,21,9,15)(4,16,10,22)(5,23,11,17)(6,18,12,24)(25,38,31,44)(26,45,32,39)(27,40,33,46)(28,47,34,41)(29,42,35,48)(30,37,36,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,32,8,26)(3,31,9,25)(4,30,10,36)(5,29,11,35)(6,28,12,34)(13,46,19,40)(14,45,20,39)(15,44,21,38)(16,43,22,37)(17,42,23,48)(18,41,24,47)>;
G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,19,7,13)(2,14,8,20)(3,21,9,15)(4,16,10,22)(5,23,11,17)(6,18,12,24)(25,38,31,44)(26,45,32,39)(27,40,33,46)(28,47,34,41)(29,42,35,48)(30,37,36,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,32,8,26)(3,31,9,25)(4,30,10,36)(5,29,11,35)(6,28,12,34)(13,46,19,40)(14,45,20,39)(15,44,21,38)(16,43,22,37)(17,42,23,48)(18,41,24,47) );
G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,11,9,7,5,3),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,16,18,20,22,24),(25,27,29,31,33,35),(26,28,30,32,34,36),(37,47,45,43,41,39),(38,48,46,44,42,40)], [(1,19,7,13),(2,14,8,20),(3,21,9,15),(4,16,10,22),(5,23,11,17),(6,18,12,24),(25,38,31,44),(26,45,32,39),(27,40,33,46),(28,47,34,41),(29,42,35,48),(30,37,36,43)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,7,27),(2,32,8,26),(3,31,9,25),(4,30,10,36),(5,29,11,35),(6,28,12,34),(13,46,19,40),(14,45,20,39),(15,44,21,38),(16,43,22,37),(17,42,23,48),(18,41,24,47)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 12A | 12B | 12C | ··· | 12N | 12O | ··· | 12V | 12W | ··· | 12AH | 12AI | 12AJ |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 9 | 9 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 6 | 6 | 6 | 6 | 18 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 9 | 9 | 9 | 9 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 | 18 | 18 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | + | + | + | - | + | ||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | S3 | Q8 | D6 | D6 | C3×S3 | C3×Q8 | S3×C6 | S3×C6 | S32 | S3×Q8 | C2×S32 | C3×S32 | Dic3.D6 | C3×S3×Q8 | S32×C6 | C3×Dic3.D6 |
kernel | C3×Dic3.D6 | C3×C6.D6 | C3×C32⋊2Q8 | C32×Dic6 | C12×C3⋊S3 | Dic3.D6 | C6.D6 | C32⋊2Q8 | C3×Dic6 | C4×C3⋊S3 | C3×Dic6 | C3×C3⋊S3 | C3×Dic3 | C3×C12 | Dic6 | C3⋊S3 | Dic3 | C12 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 8 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of C3×Dic3.D6 ►in GL6(𝔽13)
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 8 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C3×Dic3.D6 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_3.D_6
% in TeX
G:=Group("C3xDic3.D6");
// GroupNames label
G:=SmallGroup(432,645);
// by ID
G=gap.SmallGroup(432,645);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,168,176,590,303,142,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^6=1,c^2=d^6=e^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e^-1=b^3*c,e*d*e^-1=b^3*d^5>;
// generators/relations