Extensions 1→N→G→Q→1 with N=S3xC6 and Q=Dic3

Direct product G=NxQ with N=S3xC6 and Q=Dic3
dρLabelID
S3xC6xDic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=S3xC6 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(S3xC6):1Dic3 = C3xD6:Dic3φ: Dic3/C6C2 ⊆ Out S3xC648(S3xC6):1Dic3432,426
(S3xC6):2Dic3 = C62.77D6φ: Dic3/C6C2 ⊆ Out S3xC6144(S3xC6):2Dic3432,449
(S3xC6):3Dic3 = C2xS3xC3:Dic3φ: Dic3/C6C2 ⊆ Out S3xC6144(S3xC6):3Dic3432,674

Non-split extensions G=N.Q with N=S3xC6 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(S3xC6).1Dic3 = S3xC9:C8φ: Dic3/C6C2 ⊆ Out S3xC61444(S3xC6).1Dic3432,66
(S3xC6).2Dic3 = D6.Dic9φ: Dic3/C6C2 ⊆ Out S3xC61444(S3xC6).2Dic3432,67
(S3xC6).3Dic3 = D6:Dic9φ: Dic3/C6C2 ⊆ Out S3xC6144(S3xC6).3Dic3432,93
(S3xC6).4Dic3 = C2xS3xDic9φ: Dic3/C6C2 ⊆ Out S3xC6144(S3xC6).4Dic3432,308
(S3xC6).5Dic3 = C3xD6.Dic3φ: Dic3/C6C2 ⊆ Out S3xC6484(S3xC6).5Dic3432,416
(S3xC6).6Dic3 = S3xC32:4C8φ: Dic3/C6C2 ⊆ Out S3xC6144(S3xC6).6Dic3432,430
(S3xC6).7Dic3 = C33:7M4(2)φ: Dic3/C6C2 ⊆ Out S3xC6144(S3xC6).7Dic3432,433
(S3xC6).8Dic3 = C3xS3xC3:C8φ: trivial image484(S3xC6).8Dic3432,414

׿
x
:
Z
F
o
wr
Q
<