Copied to
clipboard

G = S3×C9⋊C8order 432 = 24·33

Direct product of S3 and C9⋊C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×C9⋊C8, C36.41D6, C12.41D18, D6.2Dic9, Dic3.2Dic9, (S3×C9)⋊C8, C93(S3×C8), C12.63S32, (C4×S3).3D9, C4.26(S3×D9), (S3×C18).2C4, (S3×C36).3C2, C18.17(C4×S3), C6.1(C2×Dic9), C2.1(S3×Dic9), (S3×C12).10S3, C36.S39C2, (C3×C12).159D6, (C9×Dic3).2C4, (S3×C6).1Dic3, C6.22(S3×Dic3), (C3×C36).40C22, (C3×Dic3).4Dic3, C31(C2×C9⋊C8), (C3×C9⋊C8)⋊9C2, (C3×C9)⋊3(C2×C8), C3.3(S3×C3⋊C8), (C3×S3).(C3⋊C8), C32.2(C2×C3⋊C8), (C3×C18).5(C2×C4), (C3×C6).29(C2×Dic3), SmallGroup(432,66)

Series: Derived Chief Lower central Upper central

C1C3×C9 — S3×C9⋊C8
C1C3C32C3×C9C3×C18C3×C36S3×C36 — S3×C9⋊C8
C3×C9 — S3×C9⋊C8
C1C4

Generators and relations for S3×C9⋊C8
 G = < a,b,c,d | a3=b2=c9=d8=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 244 in 74 conjugacy classes, 37 normal (31 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C3×C9, C36, C36, C2×C18, C3×Dic3, C3×C12, S3×C6, S3×C8, C2×C3⋊C8, S3×C9, C3×C18, C9⋊C8, C9⋊C8, C2×C36, C3×C3⋊C8, C324C8, S3×C12, C9×Dic3, C3×C36, S3×C18, C2×C9⋊C8, S3×C3⋊C8, C3×C9⋊C8, C36.S3, S3×C36, S3×C9⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, D9, C3⋊C8, C4×S3, C2×Dic3, Dic9, D18, S32, S3×C8, C2×C3⋊C8, C9⋊C8, C2×Dic9, S3×Dic3, S3×D9, C2×C9⋊C8, S3×C3⋊C8, S3×Dic9, S3×C9⋊C8

Smallest permutation representation of S3×C9⋊C8
On 144 points
Generators in S144
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 81)(7 73)(8 74)(9 75)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 68 31 50 13 59 22 41)(2 67 32 49 14 58 23 40)(3 66 33 48 15 57 24 39)(4 65 34 47 16 56 25 38)(5 64 35 46 17 55 26 37)(6 72 36 54 18 63 27 45)(7 71 28 53 10 62 19 44)(8 70 29 52 11 61 20 43)(9 69 30 51 12 60 21 42)(73 143 100 125 82 134 91 116)(74 142 101 124 83 133 92 115)(75 141 102 123 84 132 93 114)(76 140 103 122 85 131 94 113)(77 139 104 121 86 130 95 112)(78 138 105 120 87 129 96 111)(79 137 106 119 88 128 97 110)(80 136 107 118 89 127 98 109)(81 144 108 126 90 135 99 117)

G:=sub<Sym(144)| (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,73)(8,74)(9,75)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,68,31,50,13,59,22,41)(2,67,32,49,14,58,23,40)(3,66,33,48,15,57,24,39)(4,65,34,47,16,56,25,38)(5,64,35,46,17,55,26,37)(6,72,36,54,18,63,27,45)(7,71,28,53,10,62,19,44)(8,70,29,52,11,61,20,43)(9,69,30,51,12,60,21,42)(73,143,100,125,82,134,91,116)(74,142,101,124,83,133,92,115)(75,141,102,123,84,132,93,114)(76,140,103,122,85,131,94,113)(77,139,104,121,86,130,95,112)(78,138,105,120,87,129,96,111)(79,137,106,119,88,128,97,110)(80,136,107,118,89,127,98,109)(81,144,108,126,90,135,99,117)>;

G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,73)(8,74)(9,75)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,68,31,50,13,59,22,41)(2,67,32,49,14,58,23,40)(3,66,33,48,15,57,24,39)(4,65,34,47,16,56,25,38)(5,64,35,46,17,55,26,37)(6,72,36,54,18,63,27,45)(7,71,28,53,10,62,19,44)(8,70,29,52,11,61,20,43)(9,69,30,51,12,60,21,42)(73,143,100,125,82,134,91,116)(74,142,101,124,83,133,92,115)(75,141,102,123,84,132,93,114)(76,140,103,122,85,131,94,113)(77,139,104,121,86,130,95,112)(78,138,105,120,87,129,96,111)(79,137,106,119,88,128,97,110)(80,136,107,118,89,127,98,109)(81,144,108,126,90,135,99,117) );

G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,81),(7,73),(8,74),(9,75),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,68,31,50,13,59,22,41),(2,67,32,49,14,58,23,40),(3,66,33,48,15,57,24,39),(4,65,34,47,16,56,25,38),(5,64,35,46,17,55,26,37),(6,72,36,54,18,63,27,45),(7,71,28,53,10,62,19,44),(8,70,29,52,11,61,20,43),(9,69,30,51,12,60,21,42),(73,143,100,125,82,134,91,116),(74,142,101,124,83,133,92,115),(75,141,102,123,84,132,93,114),(76,140,103,122,85,131,94,113),(77,139,104,121,86,130,95,112),(78,138,105,120,87,129,96,111),(79,137,106,119,88,128,97,110),(80,136,107,118,89,127,98,109),(81,144,108,126,90,135,99,117)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C6D6E8A8B8C8D8E8F8G8H9A9B9C9D9E9F12A12B12C12D12E12F12G12H18A18B18C18D18E18F18G···18L24A24B24C24D36A···36F36G···36L36M···36R
order122233344446666688888888999999121212121212121218181818181818···182424242436···3636···3636···36
size1133224113322466999927272727222444222244662224446···6181818182···24···46···6

72 irreducible representations

dim111111122222222222222444444
type+++++++-+-+-+-+-+-
imageC1C2C2C2C4C4C8S3S3D6Dic3D6Dic3D9C4×S3C3⋊C8Dic9D18Dic9S3×C8C9⋊C8S32S3×Dic3S3×D9S3×C3⋊C8S3×Dic9S3×C9⋊C8
kernelS3×C9⋊C8C3×C9⋊C8C36.S3S3×C36C9×Dic3S3×C18S3×C9C9⋊C8S3×C12C36C3×Dic3C3×C12S3×C6C4×S3C18C3×S3Dic3C12D6C9S3C12C6C4C3C2C1
# reps1111228111111324333412113236

Matrix representation of S3×C9⋊C8 in GL4(𝔽73) generated by

0100
727200
0010
0001
,
1000
727200
0010
0001
,
1000
0100
0020
00037
,
63000
06300
0009
0080
G:=sub<GL(4,GF(73))| [0,72,0,0,1,72,0,0,0,0,1,0,0,0,0,1],[1,72,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,37],[63,0,0,0,0,63,0,0,0,0,0,8,0,0,9,0] >;

S3×C9⋊C8 in GAP, Magma, Sage, TeX

S_3\times C_9\rtimes C_8
% in TeX

G:=Group("S3xC9:C8");
// GroupNames label

G:=SmallGroup(432,66);
// by ID

G=gap.SmallGroup(432,66);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,36,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^9=d^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽