Copied to
clipboard

G = D6.Dic9order 432 = 24·33

The non-split extension by D6 of Dic9 acting via Dic9/C18=C2

metabelian, supersoluble, monomial

Aliases: D6.Dic9, C36.42D6, C12.42D18, Dic3.Dic9, C9⋊C85S3, C12.64S32, (C4×S3).2D9, C4.27(S3×D9), C93(C8⋊S3), (C3×C9)⋊3M4(2), (S3×C18).3C4, (S3×C12).1S3, (S3×C36).2C2, C18.18(C4×S3), C2.3(S3×Dic9), C6.2(C2×Dic9), (C3×C12).160D6, C31(C4.Dic9), (C9×Dic3).1C4, (S3×C6).2Dic3, C6.23(S3×Dic3), C36.S310C2, (C3×C36).41C22, (C3×Dic3).1Dic3, C3.3(D6.Dic3), C32.2(C4.Dic3), (C3×C9⋊C8)⋊10C2, (C3×C18).6(C2×C4), (C3×C6).30(C2×Dic3), SmallGroup(432,67)

Series: Derived Chief Lower central Upper central

C1C3×C18 — D6.Dic9
C1C3C32C3×C9C3×C18C3×C36S3×C36 — D6.Dic9
C3×C9C3×C18 — D6.Dic9
C1C4

Generators and relations for D6.Dic9
 G = < a,b,c,d | a6=b2=1, c18=a3, d2=c9, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c17 >

Subgroups: 244 in 68 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, M4(2), C18, C18, C3×S3, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C3×C9, C36, C36, C2×C18, C3×Dic3, C3×C12, S3×C6, C8⋊S3, C4.Dic3, S3×C9, C3×C18, C9⋊C8, C9⋊C8, C2×C36, C3×C3⋊C8, C324C8, S3×C12, C9×Dic3, C3×C36, S3×C18, C4.Dic9, D6.Dic3, C3×C9⋊C8, C36.S3, S3×C36, D6.Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), D9, C4×S3, C2×Dic3, Dic9, D18, S32, C8⋊S3, C4.Dic3, C2×Dic9, S3×Dic3, S3×D9, C4.Dic9, D6.Dic3, S3×Dic9, D6.Dic9

Smallest permutation representation of D6.Dic9
On 144 points
Generators in S144
(1 7 13 19 25 31)(2 8 14 20 26 32)(3 9 15 21 27 33)(4 10 16 22 28 34)(5 11 17 23 29 35)(6 12 18 24 30 36)(37 67 61 55 49 43)(38 68 62 56 50 44)(39 69 63 57 51 45)(40 70 64 58 52 46)(41 71 65 59 53 47)(42 72 66 60 54 48)(73 103 97 91 85 79)(74 104 98 92 86 80)(75 105 99 93 87 81)(76 106 100 94 88 82)(77 107 101 95 89 83)(78 108 102 96 90 84)(109 115 121 127 133 139)(110 116 122 128 134 140)(111 117 123 129 135 141)(112 118 124 130 136 142)(113 119 125 131 137 143)(114 120 126 132 138 144)
(1 106)(2 107)(3 108)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 131)(38 132)(39 133)(40 134)(41 135)(42 136)(43 137)(44 138)(45 139)(46 140)(47 141)(48 142)(49 143)(50 144)(51 109)(52 110)(53 111)(54 112)(55 113)(56 114)(57 115)(58 116)(59 117)(60 118)(61 119)(62 120)(63 121)(64 122)(65 123)(66 124)(67 125)(68 126)(69 127)(70 128)(71 129)(72 130)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 46 10 55 19 64 28 37)(2 63 11 72 20 45 29 54)(3 44 12 53 21 62 30 71)(4 61 13 70 22 43 31 52)(5 42 14 51 23 60 32 69)(6 59 15 68 24 41 33 50)(7 40 16 49 25 58 34 67)(8 57 17 66 26 39 35 48)(9 38 18 47 27 56 36 65)(73 137 82 110 91 119 100 128)(74 118 83 127 92 136 101 109)(75 135 84 144 93 117 102 126)(76 116 85 125 94 134 103 143)(77 133 86 142 95 115 104 124)(78 114 87 123 96 132 105 141)(79 131 88 140 97 113 106 122)(80 112 89 121 98 130 107 139)(81 129 90 138 99 111 108 120)

G:=sub<Sym(144)| (1,7,13,19,25,31)(2,8,14,20,26,32)(3,9,15,21,27,33)(4,10,16,22,28,34)(5,11,17,23,29,35)(6,12,18,24,30,36)(37,67,61,55,49,43)(38,68,62,56,50,44)(39,69,63,57,51,45)(40,70,64,58,52,46)(41,71,65,59,53,47)(42,72,66,60,54,48)(73,103,97,91,85,79)(74,104,98,92,86,80)(75,105,99,93,87,81)(76,106,100,94,88,82)(77,107,101,95,89,83)(78,108,102,96,90,84)(109,115,121,127,133,139)(110,116,122,128,134,140)(111,117,123,129,135,141)(112,118,124,130,136,142)(113,119,125,131,137,143)(114,120,126,132,138,144), (1,106)(2,107)(3,108)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,131)(38,132)(39,133)(40,134)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,141)(48,142)(49,143)(50,144)(51,109)(52,110)(53,111)(54,112)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(61,119)(62,120)(63,121)(64,122)(65,123)(66,124)(67,125)(68,126)(69,127)(70,128)(71,129)(72,130), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,46,10,55,19,64,28,37)(2,63,11,72,20,45,29,54)(3,44,12,53,21,62,30,71)(4,61,13,70,22,43,31,52)(5,42,14,51,23,60,32,69)(6,59,15,68,24,41,33,50)(7,40,16,49,25,58,34,67)(8,57,17,66,26,39,35,48)(9,38,18,47,27,56,36,65)(73,137,82,110,91,119,100,128)(74,118,83,127,92,136,101,109)(75,135,84,144,93,117,102,126)(76,116,85,125,94,134,103,143)(77,133,86,142,95,115,104,124)(78,114,87,123,96,132,105,141)(79,131,88,140,97,113,106,122)(80,112,89,121,98,130,107,139)(81,129,90,138,99,111,108,120)>;

G:=Group( (1,7,13,19,25,31)(2,8,14,20,26,32)(3,9,15,21,27,33)(4,10,16,22,28,34)(5,11,17,23,29,35)(6,12,18,24,30,36)(37,67,61,55,49,43)(38,68,62,56,50,44)(39,69,63,57,51,45)(40,70,64,58,52,46)(41,71,65,59,53,47)(42,72,66,60,54,48)(73,103,97,91,85,79)(74,104,98,92,86,80)(75,105,99,93,87,81)(76,106,100,94,88,82)(77,107,101,95,89,83)(78,108,102,96,90,84)(109,115,121,127,133,139)(110,116,122,128,134,140)(111,117,123,129,135,141)(112,118,124,130,136,142)(113,119,125,131,137,143)(114,120,126,132,138,144), (1,106)(2,107)(3,108)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,131)(38,132)(39,133)(40,134)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,141)(48,142)(49,143)(50,144)(51,109)(52,110)(53,111)(54,112)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(61,119)(62,120)(63,121)(64,122)(65,123)(66,124)(67,125)(68,126)(69,127)(70,128)(71,129)(72,130), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,46,10,55,19,64,28,37)(2,63,11,72,20,45,29,54)(3,44,12,53,21,62,30,71)(4,61,13,70,22,43,31,52)(5,42,14,51,23,60,32,69)(6,59,15,68,24,41,33,50)(7,40,16,49,25,58,34,67)(8,57,17,66,26,39,35,48)(9,38,18,47,27,56,36,65)(73,137,82,110,91,119,100,128)(74,118,83,127,92,136,101,109)(75,135,84,144,93,117,102,126)(76,116,85,125,94,134,103,143)(77,133,86,142,95,115,104,124)(78,114,87,123,96,132,105,141)(79,131,88,140,97,113,106,122)(80,112,89,121,98,130,107,139)(81,129,90,138,99,111,108,120) );

G=PermutationGroup([[(1,7,13,19,25,31),(2,8,14,20,26,32),(3,9,15,21,27,33),(4,10,16,22,28,34),(5,11,17,23,29,35),(6,12,18,24,30,36),(37,67,61,55,49,43),(38,68,62,56,50,44),(39,69,63,57,51,45),(40,70,64,58,52,46),(41,71,65,59,53,47),(42,72,66,60,54,48),(73,103,97,91,85,79),(74,104,98,92,86,80),(75,105,99,93,87,81),(76,106,100,94,88,82),(77,107,101,95,89,83),(78,108,102,96,90,84),(109,115,121,127,133,139),(110,116,122,128,134,140),(111,117,123,129,135,141),(112,118,124,130,136,142),(113,119,125,131,137,143),(114,120,126,132,138,144)], [(1,106),(2,107),(3,108),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,131),(38,132),(39,133),(40,134),(41,135),(42,136),(43,137),(44,138),(45,139),(46,140),(47,141),(48,142),(49,143),(50,144),(51,109),(52,110),(53,111),(54,112),(55,113),(56,114),(57,115),(58,116),(59,117),(60,118),(61,119),(62,120),(63,121),(64,122),(65,123),(66,124),(67,125),(68,126),(69,127),(70,128),(71,129),(72,130)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,46,10,55,19,64,28,37),(2,63,11,72,20,45,29,54),(3,44,12,53,21,62,30,71),(4,61,13,70,22,43,31,52),(5,42,14,51,23,60,32,69),(6,59,15,68,24,41,33,50),(7,40,16,49,25,58,34,67),(8,57,17,66,26,39,35,48),(9,38,18,47,27,56,36,65),(73,137,82,110,91,119,100,128),(74,118,83,127,92,136,101,109),(75,135,84,144,93,117,102,126),(76,116,85,125,94,134,103,143),(77,133,86,142,95,115,104,124),(78,114,87,123,96,132,105,141),(79,131,88,140,97,113,106,122),(80,112,89,121,98,130,107,139),(81,129,90,138,99,111,108,120)]])

66 conjugacy classes

class 1 2A2B3A3B3C4A4B4C6A6B6C6D6E8A8B8C8D9A9B9C9D9E9F12A12B12C12D12E12F12G12H18A18B18C18D18E18F18G···18L24A24B24C24D36A···36F36G···36L36M···36R
order122333444666668888999999121212121212121218181818181818···182424242436···3636···3636···36
size1162241162246618185454222444222244662224446···6181818182···24···46···6

66 irreducible representations

dim111111222222222222222444444
type+++++++-+-+-+-+-+-
imageC1C2C2C2C4C4S3S3D6Dic3D6Dic3M4(2)D9C4×S3Dic9D18Dic9C8⋊S3C4.Dic3C4.Dic9S32S3×Dic3S3×D9D6.Dic3S3×Dic9D6.Dic9
kernelD6.Dic9C3×C9⋊C8C36.S3S3×C36C9×Dic3S3×C18C9⋊C8S3×C12C36C3×Dic3C3×C12S3×C6C3×C9C4×S3C18Dic3C12D6C9C32C3C12C6C4C3C2C1
# reps1111221111112323334412113236

Matrix representation of D6.Dic9 in GL4(𝔽73) generated by

17200
1000
0010
0001
,
50500
552300
0010
0001
,
27000
02700
002826
002270
,
651600
57800
00460
003527
G:=sub<GL(4,GF(73))| [1,1,0,0,72,0,0,0,0,0,1,0,0,0,0,1],[50,55,0,0,5,23,0,0,0,0,1,0,0,0,0,1],[27,0,0,0,0,27,0,0,0,0,28,22,0,0,26,70],[65,57,0,0,16,8,0,0,0,0,46,35,0,0,0,27] >;

D6.Dic9 in GAP, Magma, Sage, TeX

D_6.{\rm Dic}_9
% in TeX

G:=Group("D6.Dic9");
// GroupNames label

G:=SmallGroup(432,67);
// by ID

G=gap.SmallGroup(432,67);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=1,c^18=a^3,d^2=c^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^17>;
// generators/relations

׿
×
𝔽