Extensions 1→N→G→Q→1 with N=Dic3 and Q=S3×C6

Direct product G=N×Q with N=Dic3 and Q=S3×C6
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=Dic3 and Q=S3×C6
extensionφ:Q→Out NdρLabelID
Dic31(S3×C6) = C3×S3×C3⋊D4φ: S3×C6/C3×S3C2 ⊆ Out Dic3244Dic3:1(S3xC6)432,658
Dic32(S3×C6) = C3×Dic3⋊D6φ: S3×C6/C3×S3C2 ⊆ Out Dic3244Dic3:2(S3xC6)432,659
Dic33(S3×C6) = C3×S3×D12φ: S3×C6/C3×C6C2 ⊆ Out Dic3484Dic3:3(S3xC6)432,649
Dic34(S3×C6) = C6×C3⋊D12φ: S3×C6/C3×C6C2 ⊆ Out Dic348Dic3:4(S3xC6)432,656
Dic35(S3×C6) = S32×C12φ: trivial image484Dic3:5(S3xC6)432,648
Dic36(S3×C6) = C6×C6.D6φ: trivial image48Dic3:6(S3xC6)432,654

Non-split extensions G=N.Q with N=Dic3 and Q=S3×C6
extensionφ:Q→Out NdρLabelID
Dic3.1(S3×C6) = C3×D12⋊S3φ: S3×C6/C3×S3C2 ⊆ Out Dic3484Dic3.1(S3xC6)432,644
Dic3.2(S3×C6) = C3×Dic3.D6φ: S3×C6/C3×S3C2 ⊆ Out Dic3484Dic3.2(S3xC6)432,645
Dic3.3(S3×C6) = C3×D6.3D6φ: S3×C6/C3×S3C2 ⊆ Out Dic3244Dic3.3(S3xC6)432,652
Dic3.4(S3×C6) = C3×D6.4D6φ: S3×C6/C3×S3C2 ⊆ Out Dic3244Dic3.4(S3xC6)432,653
Dic3.5(S3×C6) = C3×S3×Dic6φ: S3×C6/C3×C6C2 ⊆ Out Dic3484Dic3.5(S3xC6)432,642
Dic3.6(S3×C6) = C3×D6.D6φ: S3×C6/C3×C6C2 ⊆ Out Dic3484Dic3.6(S3xC6)432,646
Dic3.7(S3×C6) = C6×C322Q8φ: S3×C6/C3×C6C2 ⊆ Out Dic348Dic3.7(S3xC6)432,657
Dic3.8(S3×C6) = C3×D125S3φ: trivial image484Dic3.8(S3xC6)432,643
Dic3.9(S3×C6) = C3×D6.6D6φ: trivial image484Dic3.9(S3xC6)432,647

׿
×
𝔽