Extensions 1→N→G→Q→1 with N=C3×A4 and Q=D6

Direct product G=N×Q with N=C3×A4 and Q=D6
dρLabelID
S3×C6×A4366S3xC6xA4432,763

Semidirect products G=N:Q with N=C3×A4 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊D6 = C625D6φ: D6/C1D6 ⊆ Out C3×A4186+(C3xA4):D6432,523
(C3×A4)⋊2D6 = C2×C32⋊S4φ: D6/C2S3 ⊆ Out C3×A4183(C3xA4):2D6432,538
(C3×A4)⋊3D6 = C2×C62⋊C6φ: D6/C2S3 ⊆ Out C3×A4186+(C3xA4):3D6432,542
(C3×A4)⋊4D6 = C3⋊S3×S4φ: D6/C3C22 ⊆ Out C3×A436(C3xA4):4D6432,746
(C3×A4)⋊5D6 = S3×C3⋊S4φ: D6/C3C22 ⊆ Out C3×A42412+(C3xA4):5D6432,747
(C3×A4)⋊6D6 = C6210D6φ: D6/C3C22 ⊆ Out C3×A42412+(C3xA4):6D6432,748
(C3×A4)⋊7D6 = C3×S3×S4φ: D6/S3C2 ⊆ Out C3×A4246(C3xA4):7D6432,745
(C3×A4)⋊8D6 = S32×A4φ: D6/S3C2 ⊆ Out C3×A42412+(C3xA4):8D6432,749
(C3×A4)⋊9D6 = C6×C3⋊S4φ: D6/C6C2 ⊆ Out C3×A4366(C3xA4):9D6432,761
(C3×A4)⋊10D6 = C2×C324S4φ: D6/C6C2 ⊆ Out C3×A454(C3xA4):10D6432,762
(C3×A4)⋊11D6 = C2×A4×C3⋊S3φ: D6/C6C2 ⊆ Out C3×A454(C3xA4):11D6432,764

Non-split extensions G=N.Q with N=C3×A4 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×A4).D6 = C2×D9⋊A4φ: D6/C2S3 ⊆ Out C3×A4546+(C3xA4).D6432,539
(C3×A4).2D6 = D9×S4φ: D6/C3C22 ⊆ Out C3×A4366+(C3xA4).2D6432,521
(C3×A4).3D6 = C2×C9⋊S4φ: D6/C6C2 ⊆ Out C3×A4546+(C3xA4).3D6432,536
(C3×A4).4D6 = C2×A4×D9φ: D6/C6C2 ⊆ Out C3×A4546+(C3xA4).4D6432,540

׿
×
𝔽