Extensions 1→N→G→Q→1 with N=D6 and Q=S3×C6

Direct product G=N×Q with N=D6 and Q=S3×C6
dρLabelID
S32×C2×C648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=D6 and Q=S3×C6
extensionφ:Q→Out NdρLabelID
D61(S3×C6) = C3×S3×D12φ: S3×C6/C3×S3C2 ⊆ Out D6484D6:1(S3xC6)432,649
D62(S3×C6) = C3×D6⋊D6φ: S3×C6/C3×S3C2 ⊆ Out D6484D6:2(S3xC6)432,650
D63(S3×C6) = C3×Dic3⋊D6φ: S3×C6/C3×S3C2 ⊆ Out D6244D6:3(S3xC6)432,659
D64(S3×C6) = C6×D6⋊S3φ: S3×C6/C3×C6C2 ⊆ Out D648D6:4(S3xC6)432,655
D65(S3×C6) = C6×C3⋊D12φ: S3×C6/C3×C6C2 ⊆ Out D648D6:5(S3xC6)432,656
D66(S3×C6) = C3×S3×C3⋊D4φ: S3×C6/C3×C6C2 ⊆ Out D6244D6:6(S3xC6)432,658

Non-split extensions G=N.Q with N=D6 and Q=S3×C6
extensionφ:Q→Out NdρLabelID
D6.1(S3×C6) = C3×D125S3φ: S3×C6/C3×S3C2 ⊆ Out D6484D6.1(S3xC6)432,643
D6.2(S3×C6) = C3×D12⋊S3φ: S3×C6/C3×S3C2 ⊆ Out D6484D6.2(S3xC6)432,644
D6.3(S3×C6) = C3×D6.3D6φ: S3×C6/C3×S3C2 ⊆ Out D6244D6.3(S3xC6)432,652
D6.4(S3×C6) = C3×D6.4D6φ: S3×C6/C3×S3C2 ⊆ Out D6244D6.4(S3xC6)432,653
D6.5(S3×C6) = C3×D6.D6φ: S3×C6/C3×C6C2 ⊆ Out D6484D6.5(S3xC6)432,646
D6.6(S3×C6) = C3×D6.6D6φ: S3×C6/C3×C6C2 ⊆ Out D6484D6.6(S3xC6)432,647
D6.7(S3×C6) = C3×S3×Dic6φ: trivial image484D6.7(S3xC6)432,642
D6.8(S3×C6) = S32×C12φ: trivial image484D6.8(S3xC6)432,648
D6.9(S3×C6) = S3×C6×Dic3φ: trivial image48D6.9(S3xC6)432,651

׿
×
𝔽