Extensions 1→N→G→Q→1 with N=S3×C3⋊Dic3 and Q=C2

Direct product G=N×Q with N=S3×C3⋊Dic3 and Q=C2
dρLabelID
C2×S3×C3⋊Dic3144C2xS3xC3:Dic3432,674

Semidirect products G=N:Q with N=S3×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C3⋊Dic3)⋊1C2 = S3×D6⋊S3φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3):1C2432,597
(S3×C3⋊Dic3)⋊2C2 = D6⋊S3⋊S3φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3):2C2432,610
(S3×C3⋊Dic3)⋊3C2 = D6.6S32φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3):3C2432,611
(S3×C3⋊Dic3)⋊4C2 = D12⋊(C3⋊S3)φ: C2/C1C2 ⊆ Out S3×C3⋊Dic372(S3xC3:Dic3):4C2432,662
(S3×C3⋊Dic3)⋊5C2 = C62.91D6φ: C2/C1C2 ⊆ Out S3×C3⋊Dic372(S3xC3:Dic3):5C2432,676
(S3×C3⋊Dic3)⋊6C2 = S3×C327D4φ: C2/C1C2 ⊆ Out S3×C3⋊Dic372(S3xC3:Dic3):6C2432,684
(S3×C3⋊Dic3)⋊7C2 = S32×Dic3φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3):7C2432,594
(S3×C3⋊Dic3)⋊8C2 = D6.4S32φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3):8C2432,608
(S3×C3⋊Dic3)⋊9C2 = (C3×D12)⋊S3φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3144(S3xC3:Dic3):9C2432,661
(S3×C3⋊Dic3)⋊10C2 = C62.90D6φ: C2/C1C2 ⊆ Out S3×C3⋊Dic372(S3xC3:Dic3):10C2432,675
(S3×C3⋊Dic3)⋊11C2 = C4×S3×C3⋊S3φ: trivial image72(S3xC3:Dic3):11C2432,670

Non-split extensions G=N.Q with N=S3×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C3⋊Dic3).1C2 = S3×C322Q8φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3).1C2432,603
(S3×C3⋊Dic3).2C2 = S3×C324Q8φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3144(S3xC3:Dic3).2C2432,660
(S3×C3⋊Dic3).3C2 = S3×C322C8φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3).3C2432,570
(S3×C3⋊Dic3).4C2 = C33⋊M4(2)φ: C2/C1C2 ⊆ Out S3×C3⋊Dic3488-(S3xC3:Dic3).4C2432,572

׿
×
𝔽