Extensions 1→N→G→Q→1 with N=S3×C18 and Q=C4

Direct product G=N×Q with N=S3×C18 and Q=C4
dρLabelID
S3×C2×C36144S3xC2xC36432,345

Semidirect products G=N:Q with N=S3×C18 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C18)⋊1C4 = C9×D6⋊C4φ: C4/C2C2 ⊆ Out S3×C18144(S3xC18):1C4432,135
(S3×C18)⋊2C4 = D6⋊Dic9φ: C4/C2C2 ⊆ Out S3×C18144(S3xC18):2C4432,93
(S3×C18)⋊3C4 = C2×S3×Dic9φ: C4/C2C2 ⊆ Out S3×C18144(S3xC18):3C4432,308

Non-split extensions G=N.Q with N=S3×C18 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C18).1C4 = C9×C8⋊S3φ: C4/C2C2 ⊆ Out S3×C181442(S3xC18).1C4432,110
(S3×C18).2C4 = S3×C9⋊C8φ: C4/C2C2 ⊆ Out S3×C181444(S3xC18).2C4432,66
(S3×C18).3C4 = D6.Dic9φ: C4/C2C2 ⊆ Out S3×C181444(S3xC18).3C4432,67
(S3×C18).4C4 = S3×C72φ: trivial image1442(S3xC18).4C4432,109

׿
×
𝔽