Extensions 1→N→G→Q→1 with N=Dic3×C3⋊S3 and Q=C2

Direct product G=N×Q with N=Dic3×C3⋊S3 and Q=C2
dρLabelID
C2×Dic3×C3⋊S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=Dic3×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C3⋊S3)⋊1C2 = D6⋊S32φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3):1C2432,600
(Dic3×C3⋊S3)⋊2C2 = D6.6S32φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3):2C2432,611
(Dic3×C3⋊S3)⋊3C2 = C12.39S32φ: C2/C1C2 ⊆ Out Dic3×C3⋊S372(Dic3xC3:S3):3C2432,664
(Dic3×C3⋊S3)⋊4C2 = C62.91D6φ: C2/C1C2 ⊆ Out Dic3×C3⋊S372(Dic3xC3:S3):4C2432,676
(Dic3×C3⋊S3)⋊5C2 = C3⋊S3×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×C3⋊S372(Dic3xC3:S3):5C2432,685
(Dic3×C3⋊S3)⋊6C2 = S32×Dic3φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3):6C2432,594
(Dic3×C3⋊S3)⋊7C2 = Dic36S32φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3):7C2432,596
(Dic3×C3⋊S3)⋊8C2 = D6.S32φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3):8C2432,607
(Dic3×C3⋊S3)⋊9C2 = C12.57S32φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3144(Dic3xC3:S3):9C2432,668
(Dic3×C3⋊S3)⋊10C2 = C62.93D6φ: C2/C1C2 ⊆ Out Dic3×C3⋊S372(Dic3xC3:S3):10C2432,678
(Dic3×C3⋊S3)⋊11C2 = C4×S3×C3⋊S3φ: trivial image72(Dic3xC3:S3):11C2432,670

Non-split extensions G=N.Q with N=Dic3×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C3⋊S3).1C2 = C335(C2×Q8)φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3).1C2432,604
(Dic3×C3⋊S3).2C2 = C3⋊S3×Dic6φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3144(Dic3xC3:S3).2C2432,663
(Dic3×C3⋊S3).3C2 = Dic3×C32⋊C4φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3).3C2432,567
(Dic3×C3⋊S3).4C2 = C33⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out Dic3×C3⋊S3488-(Dic3xC3:S3).4C2432,569

׿
×
𝔽