Extensions 1→N→G→Q→1 with N=C9 and Q=C3×SD16

Direct product G=N×Q with N=C9 and Q=C3×SD16
dρLabelID
SD16×C3×C9216SD16xC3xC9432,218

Semidirect products G=N:Q with N=C9 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C91(C3×SD16) = C722C6φ: C3×SD16/C8C6 ⊆ Aut C9726C9:1(C3xSD16)432,122
C92(C3×SD16) = Dic18⋊C6φ: C3×SD16/D4C6 ⊆ Aut C97212-C9:2(C3xSD16)432,154
C93(C3×SD16) = D36.C6φ: C3×SD16/Q8C6 ⊆ Aut C97212+C9:3(C3xSD16)432,163
C94(C3×SD16) = SD16×3- 1+2φ: C3×SD16/SD16C3 ⊆ Aut C9726C9:4(C3xSD16)432,220
C95(C3×SD16) = C3×C72⋊C2φ: C3×SD16/C24C2 ⊆ Aut C91442C9:5(C3xSD16)432,107
C96(C3×SD16) = C3×D4.D9φ: C3×SD16/C3×D4C2 ⊆ Aut C9724C9:6(C3xSD16)432,148
C97(C3×SD16) = C3×Q82D9φ: C3×SD16/C3×Q8C2 ⊆ Aut C91444C9:7(C3xSD16)432,157

Non-split extensions G=N.Q with N=C9 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C9.(C3×SD16) = SD16×C27central extension (φ=1)2162C9.(C3xSD16)432,26

׿
×
𝔽