Copied to
clipboard

G = SD16×3- 1+2order 432 = 24·33

Direct product of SD16 and 3- 1+2

direct product, metacyclic, nilpotent (class 3), monomial

Aliases: SD16×3- 1+2, C726C6, C12.22C62, (C9×SD16)⋊C3, (Q8×C9)⋊6C6, (C3×C24).6C6, (D4×C9).2C6, C94(C3×SD16), C36.18(C2×C6), C24.12(C3×C6), C18.15(C3×D4), C32.(C3×SD16), (D4×C32).4C6, C6.32(D4×C32), (C32×SD16).C3, (Q8×C32).7C6, C82(C2×3- 1+2), C3.3(C32×SD16), D4.(C2×3- 1+2), Q83(C2×3- 1+2), (C8×3- 1+2)⋊6C2, (Q8×3- 1+2)⋊4C2, (C3×SD16).3C32, C2.4(D4×3- 1+2), (D4×3- 1+2).2C2, (C2×3- 1+2).15D4, C4.2(C22×3- 1+2), (C4×3- 1+2).18C22, (C3×D4).7(C3×C6), (C3×C6).35(C3×D4), (C3×C12).20(C2×C6), (C3×Q8).16(C3×C6), SmallGroup(432,220)

Series: Derived Chief Lower central Upper central

C1C12 — SD16×3- 1+2
C1C2C6C12C3×C12C4×3- 1+2Q8×3- 1+2 — SD16×3- 1+2
C1C2C12 — SD16×3- 1+2
C1C6C4×3- 1+2 — SD16×3- 1+2

Generators and relations for SD16×3- 1+2
 G = < a,b,c,d | a8=b2=c9=d3=1, bab=a3, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

Subgroups: 150 in 80 conjugacy classes, 49 normal (28 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C9, C32, C12, C12, C2×C6, SD16, C18, C18, C3×C6, C3×C6, C24, C24, C3×D4, C3×D4, C3×Q8, C3×Q8, 3- 1+2, C36, C36, C2×C18, C3×C12, C3×C12, C62, C3×SD16, C3×SD16, C2×3- 1+2, C2×3- 1+2, C72, D4×C9, Q8×C9, C3×C24, D4×C32, Q8×C32, C4×3- 1+2, C4×3- 1+2, C22×3- 1+2, C9×SD16, C32×SD16, C8×3- 1+2, D4×3- 1+2, Q8×3- 1+2, SD16×3- 1+2
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, SD16, C3×C6, C3×D4, 3- 1+2, C62, C3×SD16, C2×3- 1+2, D4×C32, C22×3- 1+2, C32×SD16, D4×3- 1+2, SD16×3- 1+2

Smallest permutation representation of SD16×3- 1+2
On 72 points
Generators in S72
(1 66 63 15 48 21 43 31)(2 67 55 16 49 22 44 32)(3 68 56 17 50 23 45 33)(4 69 57 18 51 24 37 34)(5 70 58 10 52 25 38 35)(6 71 59 11 53 26 39 36)(7 72 60 12 54 27 40 28)(8 64 61 13 46 19 41 29)(9 65 62 14 47 20 42 30)
(10 70)(11 71)(12 72)(13 64)(14 65)(15 66)(16 67)(17 68)(18 69)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 28)(37 57)(38 58)(39 59)(40 60)(41 61)(42 62)(43 63)(44 55)(45 56)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(29 35 32)(30 33 36)(38 44 41)(39 42 45)(46 52 49)(47 50 53)(55 61 58)(56 59 62)(64 70 67)(65 68 71)

G:=sub<Sym(72)| (1,66,63,15,48,21,43,31)(2,67,55,16,49,22,44,32)(3,68,56,17,50,23,45,33)(4,69,57,18,51,24,37,34)(5,70,58,10,52,25,38,35)(6,71,59,11,53,26,39,36)(7,72,60,12,54,27,40,28)(8,64,61,13,46,19,41,29)(9,65,62,14,47,20,42,30), (10,70)(11,71)(12,72)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,28)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,55)(45,56), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(46,52,49)(47,50,53)(55,61,58)(56,59,62)(64,70,67)(65,68,71)>;

G:=Group( (1,66,63,15,48,21,43,31)(2,67,55,16,49,22,44,32)(3,68,56,17,50,23,45,33)(4,69,57,18,51,24,37,34)(5,70,58,10,52,25,38,35)(6,71,59,11,53,26,39,36)(7,72,60,12,54,27,40,28)(8,64,61,13,46,19,41,29)(9,65,62,14,47,20,42,30), (10,70)(11,71)(12,72)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,28)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,55)(45,56), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(46,52,49)(47,50,53)(55,61,58)(56,59,62)(64,70,67)(65,68,71) );

G=PermutationGroup([[(1,66,63,15,48,21,43,31),(2,67,55,16,49,22,44,32),(3,68,56,17,50,23,45,33),(4,69,57,18,51,24,37,34),(5,70,58,10,52,25,38,35),(6,71,59,11,53,26,39,36),(7,72,60,12,54,27,40,28),(8,64,61,13,46,19,41,29),(9,65,62,14,47,20,42,30)], [(10,70),(11,71),(12,72),(13,64),(14,65),(15,66),(16,67),(17,68),(18,69),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,28),(37,57),(38,58),(39,59),(40,60),(41,61),(42,62),(43,63),(44,55),(45,56)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(29,35,32),(30,33,36),(38,44,41),(39,42,45),(46,52,49),(47,50,53),(55,61,58),(56,59,62),(64,70,67),(65,68,71)]])

77 conjugacy classes

class 1 2A2B3A3B3C3D4A4B6A6B6C6D6E6F6G6H8A8B9A···9F12A12B12C12D12E12F12G12H18A···18F18G···18L24A24B24C24D24E24F24G24H36A···36F36G···36L72A···72L
order12233334466666666889···9121212121212121218···1818···18242424242424242436···3636···3672···72
size1141133241133441212223···322446612123···312···12222266666···612···126···6

77 irreducible representations

dim111111111111222222333366
type+++++
imageC1C2C2C2C3C3C6C6C6C6C6C6D4SD16C3×D4C3×D4C3×SD16C3×SD163- 1+2C2×3- 1+2C2×3- 1+2C2×3- 1+2D4×3- 1+2SD16×3- 1+2
kernelSD16×3- 1+2C8×3- 1+2D4×3- 1+2Q8×3- 1+2C9×SD16C32×SD16C72D4×C9Q8×C9C3×C24D4×C32Q8×C32C2×3- 1+23- 1+2C18C3×C6C9C32SD16C8D4Q8C2C1
# reps1111626662221262124222224

Matrix representation of SD16×3- 1+2 in GL5(𝔽73)

676000
6767000
00100
00010
00001
,
10000
072000
007200
000720
000072
,
80000
08000
0064160
006891
000720
,
80000
08000
00100
0033640
00508

G:=sub<GL(5,GF(73))| [67,67,0,0,0,6,67,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[8,0,0,0,0,0,8,0,0,0,0,0,64,68,0,0,0,16,9,72,0,0,0,1,0],[8,0,0,0,0,0,8,0,0,0,0,0,1,33,5,0,0,0,64,0,0,0,0,0,8] >;

SD16×3- 1+2 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times 3_-^{1+2}
% in TeX

G:=Group("SD16xES-(3,1)");
// GroupNames label

G:=SmallGroup(432,220);
// by ID

G=gap.SmallGroup(432,220);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-3,-2,1512,533,394,605,8824,4421,242]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^9=d^3=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

׿
×
𝔽