Extensions 1→N→G→Q→1 with N=C3×Dic6 and Q=C6

Direct product G=N×Q with N=C3×Dic6 and Q=C6
dρLabelID
C3×C6×Dic6144C3xC6xDic6432,700

Semidirect products G=N:Q with N=C3×Dic6 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×Dic6)⋊1C6 = C3×Dic6⋊S3φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6):1C6432,420
(C3×Dic6)⋊2C6 = C3×C325SD16φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6):2C6432,422
(C3×Dic6)⋊3C6 = C32×D4.S3φ: C6/C3C2 ⊆ Out C3×Dic672(C3xDic6):3C6432,476
(C3×Dic6)⋊4C6 = C3×S3×Dic6φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6):4C6432,642
(C3×Dic6)⋊5C6 = C3×D12⋊S3φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6):5C6432,644
(C3×Dic6)⋊6C6 = C3×Dic3.D6φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6):6C6432,645
(C3×Dic6)⋊7C6 = C3×D6.6D6φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6):7C6432,647
(C3×Dic6)⋊8C6 = C32×D42S3φ: C6/C3C2 ⊆ Out C3×Dic672(C3xDic6):8C6432,705
(C3×Dic6)⋊9C6 = S3×Q8×C32φ: C6/C3C2 ⊆ Out C3×Dic6144(C3xDic6):9C6432,706
(C3×Dic6)⋊10C6 = C32×C24⋊C2φ: C6/C3C2 ⊆ Out C3×Dic6144(C3xDic6):10C6432,466
(C3×Dic6)⋊11C6 = C32×C4○D12φ: trivial image72(C3xDic6):11C6432,703

Non-split extensions G=N.Q with N=C3×Dic6 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×Dic6).1C6 = C9×D4.S3φ: C6/C3C2 ⊆ Out C3×Dic6724(C3xDic6).1C6432,151
(C3×Dic6).2C6 = C9×C3⋊Q16φ: C6/C3C2 ⊆ Out C3×Dic61444(C3xDic6).2C6432,159
(C3×Dic6).3C6 = C9×D42S3φ: C6/C3C2 ⊆ Out C3×Dic6724(C3xDic6).3C6432,359
(C3×Dic6).4C6 = S3×Q8×C9φ: C6/C3C2 ⊆ Out C3×Dic61444(C3xDic6).4C6432,366
(C3×Dic6).5C6 = C3×C322Q16φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6).5C6432,423
(C3×Dic6).6C6 = C3×C323Q16φ: C6/C3C2 ⊆ Out C3×Dic6484(C3xDic6).6C6432,424
(C3×Dic6).7C6 = C32×C3⋊Q16φ: C6/C3C2 ⊆ Out C3×Dic6144(C3xDic6).7C6432,478
(C3×Dic6).8C6 = C9×C24⋊C2φ: C6/C3C2 ⊆ Out C3×Dic61442(C3xDic6).8C6432,111
(C3×Dic6).9C6 = C9×Dic12φ: C6/C3C2 ⊆ Out C3×Dic61442(C3xDic6).9C6432,113
(C3×Dic6).10C6 = C32×Dic12φ: C6/C3C2 ⊆ Out C3×Dic6144(C3xDic6).10C6432,468
(C3×Dic6).11C6 = C18×Dic6φ: trivial image144(C3xDic6).11C6432,341
(C3×Dic6).12C6 = C9×C4○D12φ: trivial image722(C3xDic6).12C6432,347

׿
×
𝔽