Extensions 1→N→G→Q→1 with N=C3xDic6 and Q=C6

Direct product G=NxQ with N=C3xDic6 and Q=C6
dρLabelID
C3xC6xDic6144C3xC6xDic6432,700

Semidirect products G=N:Q with N=C3xDic6 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xDic6):1C6 = C3xDic6:S3φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6):1C6432,420
(C3xDic6):2C6 = C3xC32:5SD16φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6):2C6432,422
(C3xDic6):3C6 = C32xD4.S3φ: C6/C3C2 ⊆ Out C3xDic672(C3xDic6):3C6432,476
(C3xDic6):4C6 = C3xS3xDic6φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6):4C6432,642
(C3xDic6):5C6 = C3xD12:S3φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6):5C6432,644
(C3xDic6):6C6 = C3xDic3.D6φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6):6C6432,645
(C3xDic6):7C6 = C3xD6.6D6φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6):7C6432,647
(C3xDic6):8C6 = C32xD4:2S3φ: C6/C3C2 ⊆ Out C3xDic672(C3xDic6):8C6432,705
(C3xDic6):9C6 = S3xQ8xC32φ: C6/C3C2 ⊆ Out C3xDic6144(C3xDic6):9C6432,706
(C3xDic6):10C6 = C32xC24:C2φ: C6/C3C2 ⊆ Out C3xDic6144(C3xDic6):10C6432,466
(C3xDic6):11C6 = C32xC4oD12φ: trivial image72(C3xDic6):11C6432,703

Non-split extensions G=N.Q with N=C3xDic6 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xDic6).1C6 = C9xD4.S3φ: C6/C3C2 ⊆ Out C3xDic6724(C3xDic6).1C6432,151
(C3xDic6).2C6 = C9xC3:Q16φ: C6/C3C2 ⊆ Out C3xDic61444(C3xDic6).2C6432,159
(C3xDic6).3C6 = C9xD4:2S3φ: C6/C3C2 ⊆ Out C3xDic6724(C3xDic6).3C6432,359
(C3xDic6).4C6 = S3xQ8xC9φ: C6/C3C2 ⊆ Out C3xDic61444(C3xDic6).4C6432,366
(C3xDic6).5C6 = C3xC32:2Q16φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6).5C6432,423
(C3xDic6).6C6 = C3xC32:3Q16φ: C6/C3C2 ⊆ Out C3xDic6484(C3xDic6).6C6432,424
(C3xDic6).7C6 = C32xC3:Q16φ: C6/C3C2 ⊆ Out C3xDic6144(C3xDic6).7C6432,478
(C3xDic6).8C6 = C9xC24:C2φ: C6/C3C2 ⊆ Out C3xDic61442(C3xDic6).8C6432,111
(C3xDic6).9C6 = C9xDic12φ: C6/C3C2 ⊆ Out C3xDic61442(C3xDic6).9C6432,113
(C3xDic6).10C6 = C32xDic12φ: C6/C3C2 ⊆ Out C3xDic6144(C3xDic6).10C6432,468
(C3xDic6).11C6 = C18xDic6φ: trivial image144(C3xDic6).11C6432,341
(C3xDic6).12C6 = C9xC4oD12φ: trivial image722(C3xDic6).12C6432,347

׿
x
:
Z
F
o
wr
Q
<