Extensions 1→N→G→Q→1 with N=C6 and Q=C4xC3:S3

Direct product G=NxQ with N=C6 and Q=C4xC3:S3
dρLabelID
C3:S3xC2xC12144C3:S3xC2xC12432,711

Semidirect products G=N:Q with N=C6 and Q=C4xC3:S3
extensionφ:Q→Aut NdρLabelID
C6:1(C4xC3:S3) = C2xC33:8(C2xC4)φ: C4xC3:S3/C3:Dic3C2 ⊆ Aut C672C6:1(C4xC3:S3)432,679
C6:2(C4xC3:S3) = C2xC4xC33:C2φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6:2(C4xC3:S3)432,721
C6:3(C4xC3:S3) = C2xDic3xC3:S3φ: C4xC3:S3/C2xC3:S3C2 ⊆ Aut C6144C6:3(C4xC3:S3)432,677

Non-split extensions G=N.Q with N=C6 and Q=C4xC3:S3
extensionφ:Q→Aut NdρLabelID
C6.1(C4xC3:S3) = C12.69S32φ: C4xC3:S3/C3:Dic3C2 ⊆ Aut C672C6.1(C4xC3:S3)432,432
C6.2(C4xC3:S3) = C33:9M4(2)φ: C4xC3:S3/C3:Dic3C2 ⊆ Aut C672C6.2(C4xC3:S3)432,435
C6.3(C4xC3:S3) = Dic3xC3:Dic3φ: C4xC3:S3/C3:Dic3C2 ⊆ Aut C6144C6.3(C4xC3:S3)432,448
C6.4(C4xC3:S3) = C62.79D6φ: C4xC3:S3/C3:Dic3C2 ⊆ Aut C672C6.4(C4xC3:S3)432,451
C6.5(C4xC3:S3) = C62.81D6φ: C4xC3:S3/C3:Dic3C2 ⊆ Aut C6144C6.5(C4xC3:S3)432,453
C6.6(C4xC3:S3) = C8xC9:S3φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.6(C4xC3:S3)432,169
C6.7(C4xC3:S3) = C72:S3φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.7(C4xC3:S3)432,170
C6.8(C4xC3:S3) = C4xC9:Dic3φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6432C6.8(C4xC3:S3)432,180
C6.9(C4xC3:S3) = C6.Dic18φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6432C6.9(C4xC3:S3)432,181
C6.10(C4xC3:S3) = C6.11D36φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.10(C4xC3:S3)432,183
C6.11(C4xC3:S3) = C2xC4xC9:S3φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.11(C4xC3:S3)432,381
C6.12(C4xC3:S3) = C8xC33:C2φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.12(C4xC3:S3)432,496
C6.13(C4xC3:S3) = C33:15M4(2)φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.13(C4xC3:S3)432,497
C6.14(C4xC3:S3) = C4xC33:5C4φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6432C6.14(C4xC3:S3)432,503
C6.15(C4xC3:S3) = C62.146D6φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6432C6.15(C4xC3:S3)432,504
C6.16(C4xC3:S3) = C62.148D6φ: C4xC3:S3/C3xC12C2 ⊆ Aut C6216C6.16(C4xC3:S3)432,506
C6.17(C4xC3:S3) = C3:S3xC3:C8φ: C4xC3:S3/C2xC3:S3C2 ⊆ Aut C6144C6.17(C4xC3:S3)432,431
C6.18(C4xC3:S3) = C33:8M4(2)φ: C4xC3:S3/C2xC3:S3C2 ⊆ Aut C6144C6.18(C4xC3:S3)432,434
C6.19(C4xC3:S3) = C62.78D6φ: C4xC3:S3/C2xC3:S3C2 ⊆ Aut C6144C6.19(C4xC3:S3)432,450
C6.20(C4xC3:S3) = C62.82D6φ: C4xC3:S3/C2xC3:S3C2 ⊆ Aut C6144C6.20(C4xC3:S3)432,454
C6.21(C4xC3:S3) = C8xHe3:C2central extension (φ=1)723C6.21(C4xC3:S3)432,173
C6.22(C4xC3:S3) = C4xHe3:3C4central extension (φ=1)144C6.22(C4xC3:S3)432,186
C6.23(C4xC3:S3) = C2xC4xHe3:C2central extension (φ=1)72C6.23(C4xC3:S3)432,385
C6.24(C4xC3:S3) = C3:S3xC24central extension (φ=1)144C6.24(C4xC3:S3)432,480
C6.25(C4xC3:S3) = C3xC24:S3central extension (φ=1)144C6.25(C4xC3:S3)432,481
C6.26(C4xC3:S3) = C12xC3:Dic3central extension (φ=1)144C6.26(C4xC3:S3)432,487
C6.27(C4xC3:S3) = C3xC6.Dic6central extension (φ=1)144C6.27(C4xC3:S3)432,488
C6.28(C4xC3:S3) = C3xC6.11D12central extension (φ=1)144C6.28(C4xC3:S3)432,490
C6.29(C4xC3:S3) = He3:6M4(2)central stem extension (φ=1)726C6.29(C4xC3:S3)432,174
C6.30(C4xC3:S3) = C62.29D6central stem extension (φ=1)144C6.30(C4xC3:S3)432,187
C6.31(C4xC3:S3) = C62.31D6central stem extension (φ=1)72C6.31(C4xC3:S3)432,189

׿
x
:
Z
F
o
wr
Q
<