Extensions 1→N→G→Q→1 with N=C9×Dic6 and Q=C2

Direct product G=N×Q with N=C9×Dic6 and Q=C2
dρLabelID
C18×Dic6144C18xDic6432,341

Semidirect products G=N:Q with N=C9×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×Dic6)⋊1C2 = Dic6⋊D9φ: C2/C1C2 ⊆ Out C9×Dic61444(C9xDic6):1C2432,72
(C9×Dic6)⋊2C2 = C18.D12φ: C2/C1C2 ⊆ Out C9×Dic6724+(C9xDic6):2C2432,73
(C9×Dic6)⋊3C2 = D9×Dic6φ: C2/C1C2 ⊆ Out C9×Dic61444-(C9xDic6):3C2432,280
(C9×Dic6)⋊4C2 = D18.D6φ: C2/C1C2 ⊆ Out C9×Dic6724(C9xDic6):4C2432,281
(C9×Dic6)⋊5C2 = Dic65D9φ: C2/C1C2 ⊆ Out C9×Dic6724+(C9xDic6):5C2432,282
(C9×Dic6)⋊6C2 = Dic18⋊S3φ: C2/C1C2 ⊆ Out C9×Dic6724(C9xDic6):6C2432,283
(C9×Dic6)⋊7C2 = C9×C24⋊C2φ: C2/C1C2 ⊆ Out C9×Dic61442(C9xDic6):7C2432,111
(C9×Dic6)⋊8C2 = C9×D4.S3φ: C2/C1C2 ⊆ Out C9×Dic6724(C9xDic6):8C2432,151
(C9×Dic6)⋊9C2 = C9×D42S3φ: C2/C1C2 ⊆ Out C9×Dic6724(C9xDic6):9C2432,359
(C9×Dic6)⋊10C2 = S3×Q8×C9φ: C2/C1C2 ⊆ Out C9×Dic61444(C9xDic6):10C2432,366
(C9×Dic6)⋊11C2 = C9×C4○D12φ: trivial image722(C9xDic6):11C2432,347

Non-split extensions G=N.Q with N=C9×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×Dic6).1C2 = C12.D18φ: C2/C1C2 ⊆ Out C9×Dic61444(C9xDic6).1C2432,74
(C9×Dic6).2C2 = C9⋊Dic12φ: C2/C1C2 ⊆ Out C9×Dic61444-(C9xDic6).2C2432,75
(C9×Dic6).3C2 = C9×Dic12φ: C2/C1C2 ⊆ Out C9×Dic61442(C9xDic6).3C2432,113
(C9×Dic6).4C2 = C9×C3⋊Q16φ: C2/C1C2 ⊆ Out C9×Dic61444(C9xDic6).4C2432,159

׿
×
𝔽