metabelian, supersoluble, monomial
Aliases: C9⋊2Dic12, C36.16D6, C18.15D12, C12.33D18, Dic6.1D9, C9⋊C8.S3, C12.8S32, (C3×C9)⋊3Q16, C4.4(S3×D9), (C3×C12).80D6, (C3×C18).12D4, C3⋊1(C9⋊Q16), C6.4(C9⋊D4), (C3×Dic6).4S3, (C9×Dic6).2C2, C2.7(C9⋊D12), C12.D9.3C2, (C3×C36).15C22, C6.17(C3⋊D12), C3.2(C32⋊3Q16), C32.3(C3⋊Q16), (C3×C9⋊C8).1C2, (C3×C6).48(C3⋊D4), SmallGroup(432,75)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9⋊Dic12
G = < a,b,c | a9=b24=1, c2=b12, bab-1=a-1, ac=ca, cbc-1=b-1 >
Subgroups: 372 in 66 conjugacy classes, 25 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C9, C9, C32, Dic3, C12, C12, Q16, C18, C18, C3×C6, C3⋊C8, C24, Dic6, Dic6, C3×Q8, C3×C9, Dic9, C36, C36, C3×Dic3, C3⋊Dic3, C3×C12, Dic12, C3⋊Q16, C3×C18, C9⋊C8, Dic18, Q8×C9, C3×C3⋊C8, C3×Dic6, C32⋊4Q8, C9×Dic3, C9⋊Dic3, C3×C36, C9⋊Q16, C32⋊3Q16, C3×C9⋊C8, C9×Dic6, C12.D9, C9⋊Dic12
Quotients: C1, C2, C22, S3, D4, D6, Q16, D9, D12, C3⋊D4, D18, S32, Dic12, C3⋊Q16, C9⋊D4, C3⋊D12, S3×D9, C9⋊Q16, C32⋊3Q16, C9⋊D12, C9⋊Dic12
(1 93 36 17 85 28 9 77 44)(2 45 78 10 29 86 18 37 94)(3 95 38 19 87 30 11 79 46)(4 47 80 12 31 88 20 39 96)(5 73 40 21 89 32 13 81 48)(6 25 82 14 33 90 22 41 74)(7 75 42 23 91 34 15 83 26)(8 27 84 16 35 92 24 43 76)(49 118 129 65 110 121 57 102 137)(50 138 103 58 122 111 66 130 119)(51 120 131 67 112 123 59 104 139)(52 140 105 60 124 113 68 132 97)(53 98 133 69 114 125 61 106 141)(54 142 107 62 126 115 70 134 99)(55 100 135 71 116 127 63 108 143)(56 144 109 64 128 117 72 136 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 115 13 103)(2 114 14 102)(3 113 15 101)(4 112 16 100)(5 111 17 99)(6 110 18 98)(7 109 19 97)(8 108 20 120)(9 107 21 119)(10 106 22 118)(11 105 23 117)(12 104 24 116)(25 121 37 133)(26 144 38 132)(27 143 39 131)(28 142 40 130)(29 141 41 129)(30 140 42 128)(31 139 43 127)(32 138 44 126)(33 137 45 125)(34 136 46 124)(35 135 47 123)(36 134 48 122)(49 78 61 90)(50 77 62 89)(51 76 63 88)(52 75 64 87)(53 74 65 86)(54 73 66 85)(55 96 67 84)(56 95 68 83)(57 94 69 82)(58 93 70 81)(59 92 71 80)(60 91 72 79)
G:=sub<Sym(144)| (1,93,36,17,85,28,9,77,44)(2,45,78,10,29,86,18,37,94)(3,95,38,19,87,30,11,79,46)(4,47,80,12,31,88,20,39,96)(5,73,40,21,89,32,13,81,48)(6,25,82,14,33,90,22,41,74)(7,75,42,23,91,34,15,83,26)(8,27,84,16,35,92,24,43,76)(49,118,129,65,110,121,57,102,137)(50,138,103,58,122,111,66,130,119)(51,120,131,67,112,123,59,104,139)(52,140,105,60,124,113,68,132,97)(53,98,133,69,114,125,61,106,141)(54,142,107,62,126,115,70,134,99)(55,100,135,71,116,127,63,108,143)(56,144,109,64,128,117,72,136,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,115,13,103)(2,114,14,102)(3,113,15,101)(4,112,16,100)(5,111,17,99)(6,110,18,98)(7,109,19,97)(8,108,20,120)(9,107,21,119)(10,106,22,118)(11,105,23,117)(12,104,24,116)(25,121,37,133)(26,144,38,132)(27,143,39,131)(28,142,40,130)(29,141,41,129)(30,140,42,128)(31,139,43,127)(32,138,44,126)(33,137,45,125)(34,136,46,124)(35,135,47,123)(36,134,48,122)(49,78,61,90)(50,77,62,89)(51,76,63,88)(52,75,64,87)(53,74,65,86)(54,73,66,85)(55,96,67,84)(56,95,68,83)(57,94,69,82)(58,93,70,81)(59,92,71,80)(60,91,72,79)>;
G:=Group( (1,93,36,17,85,28,9,77,44)(2,45,78,10,29,86,18,37,94)(3,95,38,19,87,30,11,79,46)(4,47,80,12,31,88,20,39,96)(5,73,40,21,89,32,13,81,48)(6,25,82,14,33,90,22,41,74)(7,75,42,23,91,34,15,83,26)(8,27,84,16,35,92,24,43,76)(49,118,129,65,110,121,57,102,137)(50,138,103,58,122,111,66,130,119)(51,120,131,67,112,123,59,104,139)(52,140,105,60,124,113,68,132,97)(53,98,133,69,114,125,61,106,141)(54,142,107,62,126,115,70,134,99)(55,100,135,71,116,127,63,108,143)(56,144,109,64,128,117,72,136,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,115,13,103)(2,114,14,102)(3,113,15,101)(4,112,16,100)(5,111,17,99)(6,110,18,98)(7,109,19,97)(8,108,20,120)(9,107,21,119)(10,106,22,118)(11,105,23,117)(12,104,24,116)(25,121,37,133)(26,144,38,132)(27,143,39,131)(28,142,40,130)(29,141,41,129)(30,140,42,128)(31,139,43,127)(32,138,44,126)(33,137,45,125)(34,136,46,124)(35,135,47,123)(36,134,48,122)(49,78,61,90)(50,77,62,89)(51,76,63,88)(52,75,64,87)(53,74,65,86)(54,73,66,85)(55,96,67,84)(56,95,68,83)(57,94,69,82)(58,93,70,81)(59,92,71,80)(60,91,72,79) );
G=PermutationGroup([[(1,93,36,17,85,28,9,77,44),(2,45,78,10,29,86,18,37,94),(3,95,38,19,87,30,11,79,46),(4,47,80,12,31,88,20,39,96),(5,73,40,21,89,32,13,81,48),(6,25,82,14,33,90,22,41,74),(7,75,42,23,91,34,15,83,26),(8,27,84,16,35,92,24,43,76),(49,118,129,65,110,121,57,102,137),(50,138,103,58,122,111,66,130,119),(51,120,131,67,112,123,59,104,139),(52,140,105,60,124,113,68,132,97),(53,98,133,69,114,125,61,106,141),(54,142,107,62,126,115,70,134,99),(55,100,135,71,116,127,63,108,143),(56,144,109,64,128,117,72,136,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,115,13,103),(2,114,14,102),(3,113,15,101),(4,112,16,100),(5,111,17,99),(6,110,18,98),(7,109,19,97),(8,108,20,120),(9,107,21,119),(10,106,22,118),(11,105,23,117),(12,104,24,116),(25,121,37,133),(26,144,38,132),(27,143,39,131),(28,142,40,130),(29,141,41,129),(30,140,42,128),(31,139,43,127),(32,138,44,126),(33,137,45,125),(34,136,46,124),(35,135,47,123),(36,134,48,122),(49,78,61,90),(50,77,62,89),(51,76,63,88),(52,75,64,87),(53,74,65,86),(54,73,66,85),(55,96,67,84),(56,95,68,83),(57,94,69,82),(58,93,70,81),(59,92,71,80),(60,91,72,79)]])
51 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 18A | 18B | 18C | 18D | 18E | 18F | 24A | 24B | 24C | 24D | 36A | ··· | 36I | 36J | ··· | 36O |
order | 1 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 2 | 4 | 2 | 12 | 108 | 2 | 2 | 4 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 4 | ··· | 4 | 12 | ··· | 12 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | - | + | - | + | + | - | - | + | - | ||
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | Q16 | D9 | D12 | C3⋊D4 | D18 | Dic12 | C9⋊D4 | S32 | C3⋊Q16 | C3⋊D12 | S3×D9 | C9⋊Q16 | C32⋊3Q16 | C9⋊D12 | C9⋊Dic12 |
kernel | C9⋊Dic12 | C3×C9⋊C8 | C9×Dic6 | C12.D9 | C9⋊C8 | C3×Dic6 | C3×C18 | C36 | C3×C12 | C3×C9 | Dic6 | C18 | C3×C6 | C12 | C9 | C6 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 4 | 6 | 1 | 1 | 1 | 3 | 3 | 2 | 3 | 6 |
Matrix representation of C9⋊Dic12 ►in GL4(𝔽73) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 46 | 16 |
68 | 55 | 0 | 0 |
18 | 50 | 0 | 0 |
0 | 0 | 8 | 48 |
0 | 0 | 61 | 65 |
55 | 71 | 0 | 0 |
53 | 18 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 24 | 72 |
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,32,46,0,0,0,16],[68,18,0,0,55,50,0,0,0,0,8,61,0,0,48,65],[55,53,0,0,71,18,0,0,0,0,1,24,0,0,0,72] >;
C9⋊Dic12 in GAP, Magma, Sage, TeX
C_9\rtimes {\rm Dic}_{12}
% in TeX
G:=Group("C9:Dic12");
// GroupNames label
G:=SmallGroup(432,75);
// by ID
G=gap.SmallGroup(432,75);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,92,254,58,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c|a^9=b^24=1,c^2=b^12,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations