metabelian, supersoluble, monomial
Aliases: C36.15D6, C12.16D18, Dic6.2D9, Dic18.2S3, C12.7S32, (C3×C9)⋊2Q16, C4.18(S3×D9), C9⋊2(C3⋊Q16), (C3×C18).11D4, (C3×C12).79D6, C3⋊2(C9⋊Q16), C6.11(C9⋊D4), (C9×Dic6).1C2, (C3×Dic6).3S3, C2.7(D6⋊D9), C18.10(C3⋊D4), C36.S3.1C2, (C3×C36).14C22, (C3×Dic18).3C2, C6.15(D6⋊S3), C32.2(C3⋊Q16), C3.2(C32⋊2Q16), (C3×C6).47(C3⋊D4), SmallGroup(432,74)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12.D18
G = < a,b,c | a12=1, b18=a6, c2=a9, bab-1=a-1, cac-1=a5, cbc-1=a9b17 >
Subgroups: 272 in 62 conjugacy classes, 25 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C9, C9, C32, Dic3, C12, C12, Q16, C18, C18, C3×C6, C3⋊C8, Dic6, Dic6, C3×Q8, C3×C9, Dic9, C36, C36, C3×Dic3, C3×C12, C3⋊Q16, C3×C18, C9⋊C8, Dic18, Q8×C9, C32⋊4C8, C3×Dic6, C3×Dic6, C3×Dic9, C9×Dic3, C3×C36, C9⋊Q16, C32⋊2Q16, C36.S3, C3×Dic18, C9×Dic6, C12.D18
Quotients: C1, C2, C22, S3, D4, D6, Q16, D9, C3⋊D4, D18, S32, C3⋊Q16, C9⋊D4, D6⋊S3, S3×D9, C9⋊Q16, C32⋊2Q16, D6⋊D9, C12.D18
(1 127 7 133 13 139 19 109 25 115 31 121)(2 122 32 116 26 110 20 140 14 134 8 128)(3 129 9 135 15 141 21 111 27 117 33 123)(4 124 34 118 28 112 22 142 16 136 10 130)(5 131 11 137 17 143 23 113 29 119 35 125)(6 126 36 120 30 114 24 144 18 138 12 132)(37 95 43 101 49 107 55 77 61 83 67 89)(38 90 68 84 62 78 56 108 50 102 44 96)(39 97 45 103 51 73 57 79 63 85 69 91)(40 92 70 86 64 80 58 74 52 104 46 98)(41 99 47 105 53 75 59 81 65 87 71 93)(42 94 72 88 66 82 60 76 54 106 48 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 91 115 63 19 73 133 45)(2 62 134 90 20 44 116 108)(3 89 117 61 21 107 135 43)(4 60 136 88 22 42 118 106)(5 87 119 59 23 105 137 41)(6 58 138 86 24 40 120 104)(7 85 121 57 25 103 139 39)(8 56 140 84 26 38 122 102)(9 83 123 55 27 101 141 37)(10 54 142 82 28 72 124 100)(11 81 125 53 29 99 143 71)(12 52 144 80 30 70 126 98)(13 79 127 51 31 97 109 69)(14 50 110 78 32 68 128 96)(15 77 129 49 33 95 111 67)(16 48 112 76 34 66 130 94)(17 75 131 47 35 93 113 65)(18 46 114 74 36 64 132 92)
G:=sub<Sym(144)| (1,127,7,133,13,139,19,109,25,115,31,121)(2,122,32,116,26,110,20,140,14,134,8,128)(3,129,9,135,15,141,21,111,27,117,33,123)(4,124,34,118,28,112,22,142,16,136,10,130)(5,131,11,137,17,143,23,113,29,119,35,125)(6,126,36,120,30,114,24,144,18,138,12,132)(37,95,43,101,49,107,55,77,61,83,67,89)(38,90,68,84,62,78,56,108,50,102,44,96)(39,97,45,103,51,73,57,79,63,85,69,91)(40,92,70,86,64,80,58,74,52,104,46,98)(41,99,47,105,53,75,59,81,65,87,71,93)(42,94,72,88,66,82,60,76,54,106,48,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,91,115,63,19,73,133,45)(2,62,134,90,20,44,116,108)(3,89,117,61,21,107,135,43)(4,60,136,88,22,42,118,106)(5,87,119,59,23,105,137,41)(6,58,138,86,24,40,120,104)(7,85,121,57,25,103,139,39)(8,56,140,84,26,38,122,102)(9,83,123,55,27,101,141,37)(10,54,142,82,28,72,124,100)(11,81,125,53,29,99,143,71)(12,52,144,80,30,70,126,98)(13,79,127,51,31,97,109,69)(14,50,110,78,32,68,128,96)(15,77,129,49,33,95,111,67)(16,48,112,76,34,66,130,94)(17,75,131,47,35,93,113,65)(18,46,114,74,36,64,132,92)>;
G:=Group( (1,127,7,133,13,139,19,109,25,115,31,121)(2,122,32,116,26,110,20,140,14,134,8,128)(3,129,9,135,15,141,21,111,27,117,33,123)(4,124,34,118,28,112,22,142,16,136,10,130)(5,131,11,137,17,143,23,113,29,119,35,125)(6,126,36,120,30,114,24,144,18,138,12,132)(37,95,43,101,49,107,55,77,61,83,67,89)(38,90,68,84,62,78,56,108,50,102,44,96)(39,97,45,103,51,73,57,79,63,85,69,91)(40,92,70,86,64,80,58,74,52,104,46,98)(41,99,47,105,53,75,59,81,65,87,71,93)(42,94,72,88,66,82,60,76,54,106,48,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,91,115,63,19,73,133,45)(2,62,134,90,20,44,116,108)(3,89,117,61,21,107,135,43)(4,60,136,88,22,42,118,106)(5,87,119,59,23,105,137,41)(6,58,138,86,24,40,120,104)(7,85,121,57,25,103,139,39)(8,56,140,84,26,38,122,102)(9,83,123,55,27,101,141,37)(10,54,142,82,28,72,124,100)(11,81,125,53,29,99,143,71)(12,52,144,80,30,70,126,98)(13,79,127,51,31,97,109,69)(14,50,110,78,32,68,128,96)(15,77,129,49,33,95,111,67)(16,48,112,76,34,66,130,94)(17,75,131,47,35,93,113,65)(18,46,114,74,36,64,132,92) );
G=PermutationGroup([[(1,127,7,133,13,139,19,109,25,115,31,121),(2,122,32,116,26,110,20,140,14,134,8,128),(3,129,9,135,15,141,21,111,27,117,33,123),(4,124,34,118,28,112,22,142,16,136,10,130),(5,131,11,137,17,143,23,113,29,119,35,125),(6,126,36,120,30,114,24,144,18,138,12,132),(37,95,43,101,49,107,55,77,61,83,67,89),(38,90,68,84,62,78,56,108,50,102,44,96),(39,97,45,103,51,73,57,79,63,85,69,91),(40,92,70,86,64,80,58,74,52,104,46,98),(41,99,47,105,53,75,59,81,65,87,71,93),(42,94,72,88,66,82,60,76,54,106,48,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,91,115,63,19,73,133,45),(2,62,134,90,20,44,116,108),(3,89,117,61,21,107,135,43),(4,60,136,88,22,42,118,106),(5,87,119,59,23,105,137,41),(6,58,138,86,24,40,120,104),(7,85,121,57,25,103,139,39),(8,56,140,84,26,38,122,102),(9,83,123,55,27,101,141,37),(10,54,142,82,28,72,124,100),(11,81,125,53,29,99,143,71),(12,52,144,80,30,70,126,98),(13,79,127,51,31,97,109,69),(14,50,110,78,32,68,128,96),(15,77,129,49,33,95,111,67),(16,48,112,76,34,66,130,94),(17,75,131,47,35,93,113,65),(18,46,114,74,36,64,132,92)]])
48 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 18A | 18B | 18C | 18D | 18E | 18F | 36A | ··· | 36I | 36J | ··· | 36O |
order | 1 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 2 | 4 | 2 | 12 | 36 | 2 | 2 | 4 | 54 | 54 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 36 | 36 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 12 | ··· | 12 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | - | - | - | + | - | - | |||||
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | Q16 | D9 | C3⋊D4 | C3⋊D4 | D18 | C9⋊D4 | S32 | C3⋊Q16 | C3⋊Q16 | D6⋊S3 | S3×D9 | C9⋊Q16 | C32⋊2Q16 | D6⋊D9 | C12.D18 |
kernel | C12.D18 | C36.S3 | C3×Dic18 | C9×Dic6 | Dic18 | C3×Dic6 | C3×C18 | C36 | C3×C12 | C3×C9 | Dic6 | C18 | C3×C6 | C12 | C6 | C12 | C9 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 6 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 3 | 6 |
Matrix representation of C12.D18 ►in GL6(𝔽73)
28 | 71 | 0 | 0 | 0 | 0 |
64 | 45 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
4 | 17 | 0 | 0 | 0 | 0 |
72 | 69 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 71 |
0 | 0 | 0 | 0 | 2 | 18 |
26 | 41 | 0 | 0 | 0 | 0 |
2 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 26 | 39 |
0 | 0 | 0 | 0 | 65 | 47 |
G:=sub<GL(6,GF(73))| [28,64,0,0,0,0,71,45,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[4,72,0,0,0,0,17,69,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,20,2,0,0,0,0,71,18],[26,2,0,0,0,0,41,6,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,26,65,0,0,0,0,39,47] >;
C12.D18 in GAP, Magma, Sage, TeX
C_{12}.D_{18}
% in TeX
G:=Group("C12.D18");
// GroupNames label
G:=SmallGroup(432,74);
// by ID
G=gap.SmallGroup(432,74);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,64,254,135,58,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c|a^12=1,b^18=a^6,c^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^9*b^17>;
// generators/relations