Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C3⋊D4

Direct product G=N×Q with N=C3 and Q=S3×C3⋊D4
dρLabelID
C3×S3×C3⋊D4244C3xS3xC3:D4432,658

Semidirect products G=N:Q with N=C3 and Q=S3×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C31(S3×C3⋊D4) = S3×C3⋊D12φ: S3×C3⋊D4/S3×Dic3C2 ⊆ Aut C3248+C3:1(S3xC3:D4)432,598
C32(S3×C3⋊D4) = D64S32φ: S3×C3⋊D4/D6⋊S3C2 ⊆ Aut C3248+C3:2(S3xC3:D4)432,599
C33(S3×C3⋊D4) = D6⋊S32φ: S3×C3⋊D4/C3⋊D12C2 ⊆ Aut C3488-C3:3(S3xC3:D4)432,600
C34(S3×C3⋊D4) = C3⋊S3×C3⋊D4φ: S3×C3⋊D4/C3×C3⋊D4C2 ⊆ Aut C372C3:4(S3xC3:D4)432,685
C35(S3×C3⋊D4) = C6224D6φ: S3×C3⋊D4/C327D4C2 ⊆ Aut C3244C3:5(S3xC3:D4)432,696
C36(S3×C3⋊D4) = S3×D6⋊S3φ: S3×C3⋊D4/C2×S32C2 ⊆ Aut C3488-C3:6(S3xC3:D4)432,597
C37(S3×C3⋊D4) = S3×C327D4φ: S3×C3⋊D4/S3×C2×C6C2 ⊆ Aut C372C3:7(S3xC3:D4)432,684

Non-split extensions G=N.Q with N=C3 and Q=S3×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C3⋊D4) = D9×C3⋊D4φ: S3×C3⋊D4/C3×C3⋊D4C2 ⊆ Aut C3724C3.1(S3xC3:D4)432,314
C3.2(S3×C3⋊D4) = C62⋊D6φ: S3×C3⋊D4/C327D4C2 ⊆ Aut C33612+C3.2(S3xC3:D4)432,323
C3.3(S3×C3⋊D4) = S3×C9⋊D4φ: S3×C3⋊D4/S3×C2×C6C2 ⊆ Aut C3724C3.3(S3xC3:D4)432,313

׿
×
𝔽