direct product, metabelian, supersoluble, monomial
Aliases: S3×C3⋊D4, D6⋊6D6, Dic3⋊1D6, C62⋊1C22, C22⋊2S32, C3⋊5(S3×D4), (C2×C6)⋊4D6, (C3×S3)⋊2D4, C32⋊6(C2×D4), C3⋊Dic3⋊C22, C3⋊D12⋊5C2, D6⋊S3⋊5C2, (C22×S3)⋊4S3, (S3×C6)⋊3C22, (S3×Dic3)⋊3C2, C32⋊7D4⋊2C2, C6.17(C22×S3), (C3×C6).17C23, (C3×Dic3)⋊1C22, (C2×S32)⋊3C2, (S3×C2×C6)⋊3C2, C2.17(C2×S32), C3⋊2(C2×C3⋊D4), (C3×C3⋊D4)⋊3C2, (C2×C3⋊S3)⋊2C22, SmallGroup(144,153)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C3⋊D4
G = < a,b,c,d,e | a3=b2=c3=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 412 in 116 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, S3, C6, C6, C2×C4, D4, C23, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, C2×Dic3, C3⋊D4, C3⋊D4, C3×D4, C22×S3, C22×S3, C22×C6, C3×Dic3, C3⋊Dic3, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, S3×D4, C2×C3⋊D4, S3×Dic3, D6⋊S3, C3⋊D12, C3×C3⋊D4, C32⋊7D4, C2×S32, S3×C2×C6, S3×C3⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, S32, S3×D4, C2×C3⋊D4, C2×S32, S3×C3⋊D4
Character table of S3×C3⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12 | |
size | 1 | 1 | 2 | 3 | 3 | 6 | 6 | 18 | 2 | 2 | 4 | 6 | 18 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -1 | 2 | 1 | -2 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | 2 | 2 | 0 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -1 | 2 | 1 | -2 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ17 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | -2 | 2 | -1 | -2 | 1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | 0 | -2 | 2 | -1 | -2 | 1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -√-3 | 1 | -2 | √-3 | 0 | 1 | √-3 | -√-3 | -1 | -√-3 | √-3 | 1 | 0 | 0 | complex lifted from C3⋊D4 |
ρ20 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | √-3 | 1 | -2 | -√-3 | 0 | 1 | -√-3 | √-3 | -1 | √-3 | -√-3 | 1 | 0 | 0 | complex lifted from C3⋊D4 |
ρ21 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -√-3 | 1 | -2 | √-3 | 0 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | -1 | 0 | 0 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | √-3 | 1 | -2 | -√-3 | 0 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | -1 | 0 | 0 | complex lifted from C3⋊D4 |
ρ23 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ25 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2√-3 | 2 | 2 | -2√-3 | 0 | -1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2√-3 | 2 | 2 | 2√-3 | 0 | -1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 24)(2 21)(3 22)(4 23)(5 15)(6 16)(7 13)(8 14)(9 19)(10 20)(11 17)(12 18)
(1 17 16)(2 13 18)(3 19 14)(4 15 20)(5 10 23)(6 24 11)(7 12 21)(8 22 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 22)(23 24)
G:=sub<Sym(24)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,19)(10,20)(11,17)(12,18), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)>;
G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,19)(10,20)(11,17)(12,18), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,10,23)(6,24,11)(7,12,21)(8,22,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24) );
G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,24),(2,21),(3,22),(4,23),(5,15),(6,16),(7,13),(8,14),(9,19),(10,20),(11,17),(12,18)], [(1,17,16),(2,13,18),(3,19,14),(4,15,20),(5,10,23),(6,24,11),(7,12,21),(8,22,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,22),(23,24)]])
G:=TransitiveGroup(24,204);
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 6)(2 7)(3 8)(4 5)(9 23)(10 24)(11 21)(12 22)(13 18)(14 19)(15 20)(16 17)
(1 21 20)(2 17 22)(3 23 18)(4 19 24)(5 14 10)(6 11 15)(7 16 12)(8 9 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)
G:=sub<Sym(24)| (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,21,20)(2,17,22)(3,23,18)(4,19,24)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;
G:=Group( (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,21,20)(2,17,22)(3,23,18)(4,19,24)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );
G=PermutationGroup([[(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,6),(2,7),(3,8),(4,5),(9,23),(10,24),(11,21),(12,22),(13,18),(14,19),(15,20),(16,17)], [(1,21,20),(2,17,22),(3,23,18),(4,19,24),(5,14,10),(6,11,15),(7,16,12),(8,9,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])
G:=TransitiveGroup(24,226);
S3×C3⋊D4 is a maximal subgroup of
D12⋊24D6 S32×D4 D12⋊12D6 D12⋊13D6 C32⋊2+ 1+4 C62⋊D6 C62⋊2D6 D6⋊4S32 D6⋊S32 C62⋊24D6
S3×C3⋊D4 is a maximal quotient of
C62.9C23 C62.20C23 D6⋊Dic6 C62.49C23 C62.54C23 C62.55C23 Dic3⋊D12 D6⋊1Dic6 C62.58C23 C62.74C23 C62.75C23 D6⋊D12 C62.77C23 D6⋊4D12 Dic6⋊3D6 Dic6.19D6 D12⋊9D6 D12.22D6 D12.7D6 Dic6.20D6 D12⋊6D6 D12.11D6 D12.24D6 D12.12D6 Dic6.22D6 D12.13D6 C62.94C23 C62.100C23 C62.101C23 C62⋊3Q8 C62.111C23 C62.112C23 C62.113C23 C62⋊4D4 C62⋊5D4 C62⋊6D4 C62.121C23 C62.125C23 C62⋊D6 D6⋊4S32 D6⋊S32 C62⋊24D6
Matrix representation of S3×C3⋊D4 ►in GL4(𝔽7) generated by
2 | 6 | 5 | 6 |
4 | 3 | 1 | 3 |
1 | 1 | 2 | 5 |
1 | 6 | 3 | 5 |
3 | 2 | 6 | 3 |
6 | 0 | 4 | 5 |
6 | 6 | 5 | 2 |
0 | 0 | 0 | 6 |
0 | 0 | 4 | 6 |
2 | 3 | 1 | 0 |
6 | 1 | 2 | 2 |
4 | 4 | 5 | 0 |
1 | 2 | 4 | 0 |
5 | 0 | 6 | 2 |
4 | 3 | 3 | 6 |
3 | 3 | 2 | 3 |
3 | 3 | 5 | 0 |
6 | 0 | 4 | 6 |
6 | 1 | 3 | 2 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(7))| [2,4,1,1,6,3,1,6,5,1,2,3,6,3,5,5],[3,6,6,0,2,0,6,0,6,4,5,0,3,5,2,6],[0,2,6,4,0,3,1,4,4,1,2,5,6,0,2,0],[1,5,4,3,2,0,3,3,4,6,3,2,0,2,6,3],[3,6,6,0,3,0,1,0,5,4,3,0,0,6,2,1] >;
S3×C3⋊D4 in GAP, Magma, Sage, TeX
S_3\times C_3\rtimes D_4
% in TeX
G:=Group("S3xC3:D4");
// GroupNames label
G:=SmallGroup(144,153);
// by ID
G=gap.SmallGroup(144,153);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,116,490,3461]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^3=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export