Extensions 1→N→G→Q→1 with N=C3 and Q=Dic6⋊S3

Direct product G=N×Q with N=C3 and Q=Dic6⋊S3
dρLabelID
C3×Dic6⋊S3484C3xDic6:S3432,420

Semidirect products G=N:Q with N=C3 and Q=Dic6⋊S3
extensionφ:Q→Aut NdρLabelID
C31(Dic6⋊S3) = C3318SD16φ: Dic6⋊S3/C324C8C2 ⊆ Aut C3484C3:1(Dic6:S3)432,458
C32(Dic6⋊S3) = C3313SD16φ: Dic6⋊S3/C3×Dic6C2 ⊆ Aut C3144C3:2(Dic6:S3)432,440
C33(Dic6⋊S3) = C3312SD16φ: Dic6⋊S3/C3×D12C2 ⊆ Aut C3144C3:3(Dic6:S3)432,439

Non-split extensions G=N.Q with N=C3 and Q=Dic6⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(Dic6⋊S3) = He33SD16φ: Dic6⋊S3/C324C8C2 ⊆ Aut C3726C3.1(Dic6:S3)432,78
C3.2(Dic6⋊S3) = Dic6⋊D9φ: Dic6⋊S3/C3×Dic6C2 ⊆ Aut C31444C3.2(Dic6:S3)432,72
C3.3(Dic6⋊S3) = D12.D9φ: Dic6⋊S3/C3×D12C2 ⊆ Aut C31444C3.3(Dic6:S3)432,70

׿
×
𝔽