Extensions 1→N→G→Q→1 with N=Dic6 and Q=C3×S3

Direct product G=N×Q with N=Dic6 and Q=C3×S3
dρLabelID
C3×S3×Dic6484C3xS3xDic6432,642

Semidirect products G=N:Q with N=Dic6 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
Dic61(C3×S3) = C3×C325SD16φ: C3×S3/C32C2 ⊆ Out Dic6484Dic6:1(C3xS3)432,422
Dic62(C3×S3) = C3×Dic6⋊S3φ: C3×S3/C32C2 ⊆ Out Dic6484Dic6:2(C3xS3)432,420
Dic63(C3×S3) = C3×D12⋊S3φ: C3×S3/C32C2 ⊆ Out Dic6484Dic6:3(C3xS3)432,644
Dic64(C3×S3) = C3×Dic3.D6φ: C3×S3/C32C2 ⊆ Out Dic6484Dic6:4(C3xS3)432,645
Dic65(C3×S3) = C3×D6.6D6φ: trivial image484Dic6:5(C3xS3)432,647

Non-split extensions G=N.Q with N=Dic6 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
Dic6.1(C3×S3) = C3×C323Q16φ: C3×S3/C32C2 ⊆ Out Dic6484Dic6.1(C3xS3)432,424
Dic6.2(C3×S3) = C3×C322Q16φ: C3×S3/C32C2 ⊆ Out Dic6484Dic6.2(C3xS3)432,423

׿
×
𝔽