Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=Dic3

Direct product G=N×Q with N=C3×Dic3 and Q=Dic3
dρLabelID
C3×Dic3248C3xDic3^2432,425

Semidirect products G=N:Q with N=C3×Dic3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1Dic3 = C62.80D6φ: Dic3/C6C2 ⊆ Out C3×Dic3144(C3xDic3):1Dic3432,452
(C3×Dic3)⋊2Dic3 = Dic3×C3⋊Dic3φ: Dic3/C6C2 ⊆ Out C3×Dic3144(C3xDic3):2Dic3432,448
(C3×Dic3)⋊3Dic3 = C3×Dic3⋊Dic3φ: Dic3/C6C2 ⊆ Out C3×Dic348(C3xDic3):3Dic3432,428

Non-split extensions G=N.Q with N=C3×Dic3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1Dic3 = D6.Dic9φ: Dic3/C6C2 ⊆ Out C3×Dic31444(C3xDic3).1Dic3432,67
(C3×Dic3).2Dic3 = Dic3⋊Dic9φ: Dic3/C6C2 ⊆ Out C3×Dic3144(C3xDic3).2Dic3432,90
(C3×Dic3).3Dic3 = C337M4(2)φ: Dic3/C6C2 ⊆ Out C3×Dic3144(C3xDic3).3Dic3432,433
(C3×Dic3).4Dic3 = S3×C9⋊C8φ: Dic3/C6C2 ⊆ Out C3×Dic31444(C3xDic3).4Dic3432,66
(C3×Dic3).5Dic3 = Dic3×Dic9φ: Dic3/C6C2 ⊆ Out C3×Dic3144(C3xDic3).5Dic3432,87
(C3×Dic3).6Dic3 = S3×C324C8φ: Dic3/C6C2 ⊆ Out C3×Dic3144(C3xDic3).6Dic3432,430
(C3×Dic3).7Dic3 = C3×D6.Dic3φ: Dic3/C6C2 ⊆ Out C3×Dic3484(C3xDic3).7Dic3432,416
(C3×Dic3).8Dic3 = C3×S3×C3⋊C8φ: trivial image484(C3xDic3).8Dic3432,414

׿
×
𝔽