Extensions 1→N→G→Q→1 with N=C3×S3 and Q=C4×S3

Direct product G=N×Q with N=C3×S3 and Q=C4×S3
dρLabelID
S32×C12484S3^2xC12432,648

Semidirect products G=N:Q with N=C3×S3 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
(C3×S3)⋊1(C4×S3) = S3×C6.D6φ: C4×S3/Dic3C2 ⊆ Out C3×S3248+(C3xS3):1(C4xS3)432,595
(C3×S3)⋊2(C4×S3) = C4×S3×C3⋊S3φ: C4×S3/C12C2 ⊆ Out C3×S372(C3xS3):2(C4xS3)432,670
(C3×S3)⋊3(C4×S3) = S32×Dic3φ: C4×S3/D6C2 ⊆ Out C3×S3488-(C3xS3):3(C4xS3)432,594

Non-split extensions G=N.Q with N=C3×S3 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
(C3×S3).(C4×S3) = C4×S3×D9φ: C4×S3/C12C2 ⊆ Out C3×S3724(C3xS3).(C4xS3)432,290

׿
×
𝔽