Copied to
clipboard

G = C4xS3xD9order 432 = 24·33

Direct product of C4, S3 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C4xS3xD9, C36:5D6, C12:5D18, Dic9:5D6, D6.9D18, D18.9D6, Dic3:5D18, C12.66S32, (S3xC36):5C2, (C12xD9):8C2, (C3xC36):6C22, (Dic3xD9):6C2, (S3xDic9):6C2, (S3xC6).29D6, (S3xC12).11S3, (C3xC12).162D6, C18.D6:6C2, C9:Dic3:3C22, (C6xD9).9C22, C6.11(C22xD9), (C3xC18).11C23, C18.11(C22xS3), (C3xDic3).39D6, (C9xDic3):5C22, (C3xDic9):3C22, (S3xC18).12C22, C9:1(S3xC2xC4), C3:1(C2xC4xD9), (C2xS3xD9).C2, C3.1(C4xS32), (C4xC9:S3):8C2, C9:S3:1(C2xC4), C2.1(C2xS3xD9), C6.30(C2xS32), (C3xS3).(C4xS3), (S3xC9):1(C2xC4), (C3xD9):1(C2xC4), (C3xC9):1(C22xC4), C32.2(S3xC2xC4), (C2xC9:S3).9C22, (C3xC6).79(C22xS3), SmallGroup(432,290)

Series: Derived Chief Lower central Upper central

C1C3xC9 — C4xS3xD9
C1C3C32C3xC9C3xC18S3xC18C2xS3xD9 — C4xS3xD9
C3xC9 — C4xS3xD9
C1C4

Generators and relations for C4xS3xD9
 G = < a,b,c,d,e | a4=b3=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1068 in 178 conjugacy classes, 57 normal (41 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C2xC4, C23, C9, C9, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C22xC4, D9, D9, C18, C18, C3xS3, C3xS3, C3:S3, C3xC6, C4xS3, C4xS3, C2xDic3, C2xC12, C22xS3, C3xC9, Dic9, Dic9, C36, C36, D18, D18, C2xC18, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S32, S3xC6, S3xC6, C2xC3:S3, S3xC2xC4, C3xD9, S3xC9, C9:S3, C3xC18, C4xD9, C4xD9, C2xDic9, C2xC36, C22xD9, S3xDic3, C6.D6, S3xC12, S3xC12, C4xC3:S3, C2xS32, C3xDic9, C9xDic3, C9:Dic3, C3xC36, S3xD9, C6xD9, S3xC18, C2xC9:S3, C2xC4xD9, C4xS32, Dic3xD9, C18.D6, S3xDic9, C12xD9, S3xC36, C4xC9:S3, C2xS3xD9, C4xS3xD9
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, D9, C4xS3, C22xS3, D18, S32, S3xC2xC4, C4xD9, C22xD9, C2xS32, S3xD9, C2xC4xD9, C4xS32, C2xS3xD9, C4xS3xD9

Smallest permutation representation of C4xS3xD9
On 72 points
Generators in S72
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)(37 64 46 55)(38 65 47 56)(39 66 48 57)(40 67 49 58)(41 68 50 59)(42 69 51 60)(43 70 52 61)(44 71 53 62)(45 72 54 63)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 46)(8 47)(9 48)(10 45)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 72)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 63)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 48)(2 47)(3 46)(4 54)(5 53)(6 52)(7 51)(8 50)(9 49)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 45)(18 44)(19 70)(20 69)(21 68)(22 67)(23 66)(24 65)(25 64)(26 72)(27 71)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 63)(36 62)

G:=sub<Sym(72)| (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,64,46,55)(38,65,47,56)(39,66,48,57)(40,67,49,58)(41,68,50,59)(42,69,51,60)(43,70,52,61)(44,71,53,62)(45,72,54,63), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,46)(8,47)(9,48)(10,45)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,72)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,63)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,48)(2,47)(3,46)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,72)(27,71)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)>;

G:=Group( (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,64,46,55)(38,65,47,56)(39,66,48,57)(40,67,49,58)(41,68,50,59)(42,69,51,60)(43,70,52,61)(44,71,53,62)(45,72,54,63), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,46)(8,47)(9,48)(10,45)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,72)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,63)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,48)(2,47)(3,46)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,72)(27,71)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62) );

G=PermutationGroup([[(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22),(37,64,46,55),(38,65,47,56),(39,66,48,57),(40,67,49,58),(41,68,50,59),(42,69,51,60),(43,70,52,61),(44,71,53,62),(45,72,54,63)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,46),(8,47),(9,48),(10,45),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,72),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,63),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,48),(2,47),(3,46),(4,54),(5,53),(6,52),(7,51),(8,50),(9,49),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,45),(18,44),(19,70),(20,69),(21,68),(22,67),(23,66),(24,65),(25,64),(26,72),(27,71),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,63),(36,62)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F4G4H6A6B6C6D6E6F6G9A9B9C9D9E9F12A12B12C12D12E12F12G12H12I12J18A18B18C18D18E18F18G···18L36A···36F36G···36L36M···36R
order122222223334444444466666669999991212121212121212121218181818181818···1836···3636···3636···36
size113399272722411339927272246618182224442222446618182224446···62···24···46···6

72 irreducible representations

dim111111111222222222222222444444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3S3D6D6D6D6D6D6D9C4xS3C4xS3D18D18D18C4xD9S32C2xS32S3xD9C4xS32C2xS3xD9C4xS3xD9
kernelC4xS3xD9Dic3xD9C18.D6S3xDic9C12xD9S3xC36C4xC9:S3C2xS3xD9S3xD9C4xD9S3xC12Dic9C36D18C3xDic3C3xC12S3xC6C4xS3D9C3xS3Dic3C12D6S3C12C6C4C3C2C1
# reps1111111181111111134433312113236

Matrix representation of C4xS3xD9 in GL4(F37) generated by

31000
03100
00360
00036
,
36100
36000
0010
0001
,
03600
36000
00360
00036
,
1000
0100
00266
003120
,
36000
03600
00266
001711
G:=sub<GL(4,GF(37))| [31,0,0,0,0,31,0,0,0,0,36,0,0,0,0,36],[36,36,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,36,0,0,36,0,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,1,0,0,0,0,26,31,0,0,6,20],[36,0,0,0,0,36,0,0,0,0,26,17,0,0,6,11] >;

C4xS3xD9 in GAP, Magma, Sage, TeX

C_4\times S_3\times D_9
% in TeX

G:=Group("C4xS3xD9");
// GroupNames label

G:=SmallGroup(432,290);
// by ID

G=gap.SmallGroup(432,290);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<