Extensions 1→N→G→Q→1 with N=C6 and Q=D36

Direct product G=NxQ with N=C6 and Q=D36
dρLabelID
C6xD36144C6xD36432,343

Semidirect products G=N:Q with N=C6 and Q=D36
extensionφ:Q→Aut NdρLabelID
C6:1D36 = C2xC36:S3φ: D36/C36C2 ⊆ Aut C6216C6:1D36432,382
C6:2D36 = C2xC3:D36φ: D36/D18C2 ⊆ Aut C672C6:2D36432,307

Non-split extensions G=N.Q with N=C6 and Q=D36
extensionφ:Q→Aut NdρLabelID
C6.1D36 = Dic108φ: D36/C36C2 ⊆ Aut C64322-C6.1D36432,4
C6.2D36 = C216:C2φ: D36/C36C2 ⊆ Aut C62162C6.2D36432,7
C6.3D36 = D216φ: D36/C36C2 ⊆ Aut C62162+C6.3D36432,8
C6.4D36 = C4:Dic27φ: D36/C36C2 ⊆ Aut C6432C6.4D36432,13
C6.5D36 = D54:C4φ: D36/C36C2 ⊆ Aut C6216C6.5D36432,14
C6.6D36 = C2xD108φ: D36/C36C2 ⊆ Aut C6216C6.6D36432,45
C6.7D36 = C24.D9φ: D36/C36C2 ⊆ Aut C6432C6.7D36432,168
C6.8D36 = C24:D9φ: D36/C36C2 ⊆ Aut C6216C6.8D36432,171
C6.9D36 = C72:1S3φ: D36/C36C2 ⊆ Aut C6216C6.9D36432,172
C6.10D36 = C36:Dic3φ: D36/C36C2 ⊆ Aut C6432C6.10D36432,182
C6.11D36 = C6.11D36φ: D36/C36C2 ⊆ Aut C6216C6.11D36432,183
C6.12D36 = D36.S3φ: D36/D18C2 ⊆ Aut C61444-C6.12D36432,62
C6.13D36 = C6.D36φ: D36/D18C2 ⊆ Aut C6724+C6.13D36432,63
C6.14D36 = C3:D72φ: D36/D18C2 ⊆ Aut C6724+C6.14D36432,64
C6.15D36 = C3:Dic36φ: D36/D18C2 ⊆ Aut C61444-C6.15D36432,65
C6.16D36 = Dic3:Dic9φ: D36/D18C2 ⊆ Aut C6144C6.16D36432,90
C6.17D36 = D18:Dic3φ: D36/D18C2 ⊆ Aut C6144C6.17D36432,91
C6.18D36 = C6.18D36φ: D36/D18C2 ⊆ Aut C672C6.18D36432,92
C6.19D36 = C3xDic36central extension (φ=1)1442C6.19D36432,104
C6.20D36 = C3xC72:C2central extension (φ=1)1442C6.20D36432,107
C6.21D36 = C3xD72central extension (φ=1)1442C6.21D36432,108
C6.22D36 = C3xC4:Dic9central extension (φ=1)144C6.22D36432,130
C6.23D36 = C3xD18:C4central extension (φ=1)144C6.23D36432,134

׿
x
:
Z
F
o
wr
Q
<