Copied to
clipboard

G = C3⋊Dic36order 432 = 24·33

The semidirect product of C3 and Dic36 acting via Dic36/Dic18=C2

metabelian, supersoluble, monomial

Aliases: C32Dic36, C6.15D36, C36.33D6, C12.12D18, Dic18.1S3, C32.2Dic12, C3⋊C8.D9, (C3×C9)⋊1Q16, C12.47S32, (C3×C18).4D4, C4.11(S3×D9), C91(C3⋊Q16), (C3×C6).32D12, (C3×C12).72D6, C18.4(C3⋊D4), (C3×C36).4C22, C6.4(C3⋊D12), C2.7(C3⋊D36), C12.D9.1C2, (C3×Dic18).1C2, C3.1(C323Q16), (C9×C3⋊C8).1C2, (C3×C3⋊C8).2S3, SmallGroup(432,65)

Series: Derived Chief Lower central Upper central

C1C3×C36 — C3⋊Dic36
C1C3C9C3×C9C3×C18C3×C36C3×Dic18 — C3⋊Dic36
C3×C9C3×C18C3×C36 — C3⋊Dic36
C1C2C4

Generators and relations for C3⋊Dic36
 G = < a,b,c | a3=b72=1, c2=b36, bab-1=a-1, ac=ca, cbc-1=b-1 >

Subgroups: 400 in 66 conjugacy classes, 25 normal (all characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C9, C9, C32, Dic3, C12, C12, Q16, C18, C18, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, C3×C9, Dic9, C36, C36, C3×Dic3, C3⋊Dic3, C3×C12, Dic12, C3⋊Q16, C3×C18, C72, Dic18, Dic18, C3×C3⋊C8, C3×Dic6, C324Q8, C3×Dic9, C9⋊Dic3, C3×C36, Dic36, C323Q16, C9×C3⋊C8, C3×Dic18, C12.D9, C3⋊Dic36
Quotients: C1, C2, C22, S3, D4, D6, Q16, D9, D12, C3⋊D4, D18, S32, Dic12, C3⋊Q16, D36, C3⋊D12, S3×D9, Dic36, C323Q16, C3⋊D36, C3⋊Dic36

Smallest permutation representation of C3⋊Dic36
On 144 points
Generators in S144
(1 49 25)(2 26 50)(3 51 27)(4 28 52)(5 53 29)(6 30 54)(7 55 31)(8 32 56)(9 57 33)(10 34 58)(11 59 35)(12 36 60)(13 61 37)(14 38 62)(15 63 39)(16 40 64)(17 65 41)(18 42 66)(19 67 43)(20 44 68)(21 69 45)(22 46 70)(23 71 47)(24 48 72)(73 97 121)(74 122 98)(75 99 123)(76 124 100)(77 101 125)(78 126 102)(79 103 127)(80 128 104)(81 105 129)(82 130 106)(83 107 131)(84 132 108)(85 109 133)(86 134 110)(87 111 135)(88 136 112)(89 113 137)(90 138 114)(91 115 139)(92 140 116)(93 117 141)(94 142 118)(95 119 143)(96 144 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 99 37 135)(2 98 38 134)(3 97 39 133)(4 96 40 132)(5 95 41 131)(6 94 42 130)(7 93 43 129)(8 92 44 128)(9 91 45 127)(10 90 46 126)(11 89 47 125)(12 88 48 124)(13 87 49 123)(14 86 50 122)(15 85 51 121)(16 84 52 120)(17 83 53 119)(18 82 54 118)(19 81 55 117)(20 80 56 116)(21 79 57 115)(22 78 58 114)(23 77 59 113)(24 76 60 112)(25 75 61 111)(26 74 62 110)(27 73 63 109)(28 144 64 108)(29 143 65 107)(30 142 66 106)(31 141 67 105)(32 140 68 104)(33 139 69 103)(34 138 70 102)(35 137 71 101)(36 136 72 100)

G:=sub<Sym(144)| (1,49,25)(2,26,50)(3,51,27)(4,28,52)(5,53,29)(6,30,54)(7,55,31)(8,32,56)(9,57,33)(10,34,58)(11,59,35)(12,36,60)(13,61,37)(14,38,62)(15,63,39)(16,40,64)(17,65,41)(18,42,66)(19,67,43)(20,44,68)(21,69,45)(22,46,70)(23,71,47)(24,48,72)(73,97,121)(74,122,98)(75,99,123)(76,124,100)(77,101,125)(78,126,102)(79,103,127)(80,128,104)(81,105,129)(82,130,106)(83,107,131)(84,132,108)(85,109,133)(86,134,110)(87,111,135)(88,136,112)(89,113,137)(90,138,114)(91,115,139)(92,140,116)(93,117,141)(94,142,118)(95,119,143)(96,144,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,99,37,135)(2,98,38,134)(3,97,39,133)(4,96,40,132)(5,95,41,131)(6,94,42,130)(7,93,43,129)(8,92,44,128)(9,91,45,127)(10,90,46,126)(11,89,47,125)(12,88,48,124)(13,87,49,123)(14,86,50,122)(15,85,51,121)(16,84,52,120)(17,83,53,119)(18,82,54,118)(19,81,55,117)(20,80,56,116)(21,79,57,115)(22,78,58,114)(23,77,59,113)(24,76,60,112)(25,75,61,111)(26,74,62,110)(27,73,63,109)(28,144,64,108)(29,143,65,107)(30,142,66,106)(31,141,67,105)(32,140,68,104)(33,139,69,103)(34,138,70,102)(35,137,71,101)(36,136,72,100)>;

G:=Group( (1,49,25)(2,26,50)(3,51,27)(4,28,52)(5,53,29)(6,30,54)(7,55,31)(8,32,56)(9,57,33)(10,34,58)(11,59,35)(12,36,60)(13,61,37)(14,38,62)(15,63,39)(16,40,64)(17,65,41)(18,42,66)(19,67,43)(20,44,68)(21,69,45)(22,46,70)(23,71,47)(24,48,72)(73,97,121)(74,122,98)(75,99,123)(76,124,100)(77,101,125)(78,126,102)(79,103,127)(80,128,104)(81,105,129)(82,130,106)(83,107,131)(84,132,108)(85,109,133)(86,134,110)(87,111,135)(88,136,112)(89,113,137)(90,138,114)(91,115,139)(92,140,116)(93,117,141)(94,142,118)(95,119,143)(96,144,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,99,37,135)(2,98,38,134)(3,97,39,133)(4,96,40,132)(5,95,41,131)(6,94,42,130)(7,93,43,129)(8,92,44,128)(9,91,45,127)(10,90,46,126)(11,89,47,125)(12,88,48,124)(13,87,49,123)(14,86,50,122)(15,85,51,121)(16,84,52,120)(17,83,53,119)(18,82,54,118)(19,81,55,117)(20,80,56,116)(21,79,57,115)(22,78,58,114)(23,77,59,113)(24,76,60,112)(25,75,61,111)(26,74,62,110)(27,73,63,109)(28,144,64,108)(29,143,65,107)(30,142,66,106)(31,141,67,105)(32,140,68,104)(33,139,69,103)(34,138,70,102)(35,137,71,101)(36,136,72,100) );

G=PermutationGroup([[(1,49,25),(2,26,50),(3,51,27),(4,28,52),(5,53,29),(6,30,54),(7,55,31),(8,32,56),(9,57,33),(10,34,58),(11,59,35),(12,36,60),(13,61,37),(14,38,62),(15,63,39),(16,40,64),(17,65,41),(18,42,66),(19,67,43),(20,44,68),(21,69,45),(22,46,70),(23,71,47),(24,48,72),(73,97,121),(74,122,98),(75,99,123),(76,124,100),(77,101,125),(78,126,102),(79,103,127),(80,128,104),(81,105,129),(82,130,106),(83,107,131),(84,132,108),(85,109,133),(86,134,110),(87,111,135),(88,136,112),(89,113,137),(90,138,114),(91,115,139),(92,140,116),(93,117,141),(94,142,118),(95,119,143),(96,144,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,99,37,135),(2,98,38,134),(3,97,39,133),(4,96,40,132),(5,95,41,131),(6,94,42,130),(7,93,43,129),(8,92,44,128),(9,91,45,127),(10,90,46,126),(11,89,47,125),(12,88,48,124),(13,87,49,123),(14,86,50,122),(15,85,51,121),(16,84,52,120),(17,83,53,119),(18,82,54,118),(19,81,55,117),(20,80,56,116),(21,79,57,115),(22,78,58,114),(23,77,59,113),(24,76,60,112),(25,75,61,111),(26,74,62,110),(27,73,63,109),(28,144,64,108),(29,143,65,107),(30,142,66,106),(31,141,67,105),(32,140,68,104),(33,139,69,103),(34,138,70,102),(35,137,71,101),(36,136,72,100)]])

60 conjugacy classes

class 1  2 3A3B3C4A4B4C6A6B6C8A8B9A9B9C9D9E9F12A12B12C12D12E12F12G18A18B18C18D18E18F24A24B24C24D36A···36F36G···36L72A···72L
order1233344466688999999121212121212121818181818182424242436···3636···3672···72
size112242361082246622244422444363622244466662···24···46···6

60 irreducible representations

dim111122222222222224444444
type+++++++++-+++-+-+-++-+-
imageC1C2C2C2S3S3D4D6D6Q16D9C3⋊D4D12D18Dic12D36Dic36S32C3⋊Q16C3⋊D12S3×D9C323Q16C3⋊D36C3⋊Dic36
kernelC3⋊Dic36C9×C3⋊C8C3×Dic18C12.D9Dic18C3×C3⋊C8C3×C18C36C3×C12C3×C9C3⋊C8C18C3×C6C12C32C6C3C12C9C6C4C3C2C1
# reps1111111112322346121113236

Matrix representation of C3⋊Dic36 in GL6(𝔽73)

100000
010000
00727200
001000
000010
000001
,
50180000
55680000
001000
00727200
00002919
00005448
,
18530000
71550000
0072000
0007200
000010
0000172

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[50,55,0,0,0,0,18,68,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,29,54,0,0,0,0,19,48],[18,71,0,0,0,0,53,55,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,72] >;

C3⋊Dic36 in GAP, Magma, Sage, TeX

C_3\rtimes {\rm Dic}_{36}
% in TeX

G:=Group("C3:Dic36");
// GroupNames label

G:=SmallGroup(432,65);
// by ID

G=gap.SmallGroup(432,65);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,92,254,58,571,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^3=b^72=1,c^2=b^36,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽