metabelian, supersoluble, monomial
Aliases: C3⋊2D72, D36⋊1S3, C6.14D36, C36.32D6, C12.11D18, C32.2D24, C3⋊C8⋊3D9, (C3×C9)⋊1D8, C12.46S32, C9⋊1(D4⋊S3), (C3×D36)⋊1C2, C4.10(S3×D9), (C3×C18).3D4, C36⋊S3⋊1C2, (C3×C6).31D12, (C3×C12).71D6, C18.3(C3⋊D4), (C3×C36).3C22, C6.3(C3⋊D12), C3.1(C3⋊D24), C2.6(C3⋊D36), (C9×C3⋊C8)⋊1C2, (C3×C3⋊C8).1S3, SmallGroup(432,64)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D72
G = < a,b,c | a3=b72=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 808 in 82 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C9, C9, C32, C12, C12, D6, C2×C6, D8, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×C9, C36, C36, D18, C3×C12, S3×C6, C2×C3⋊S3, D24, D4⋊S3, C3×D9, C9⋊S3, C3×C18, C72, D36, D36, C3×C3⋊C8, C3×D12, C12⋊S3, C3×C36, C6×D9, C2×C9⋊S3, D72, C3⋊D24, C9×C3⋊C8, C3×D36, C36⋊S3, C3⋊D72
Quotients: C1, C2, C22, S3, D4, D6, D8, D9, D12, C3⋊D4, D18, S32, D24, D4⋊S3, D36, C3⋊D12, S3×D9, D72, C3⋊D24, C3⋊D36, C3⋊D72
(1 25 49)(2 50 26)(3 27 51)(4 52 28)(5 29 53)(6 54 30)(7 31 55)(8 56 32)(9 33 57)(10 58 34)(11 35 59)(12 60 36)(13 37 61)(14 62 38)(15 39 63)(16 64 40)(17 41 65)(18 66 42)(19 43 67)(20 68 44)(21 45 69)(22 70 46)(23 47 71)(24 72 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(64 72)(65 71)(66 70)(67 69)
G:=sub<Sym(72)| (1,25,49)(2,50,26)(3,27,51)(4,52,28)(5,29,53)(6,54,30)(7,31,55)(8,56,32)(9,33,57)(10,58,34)(11,35,59)(12,60,36)(13,37,61)(14,62,38)(15,39,63)(16,64,40)(17,41,65)(18,66,42)(19,43,67)(20,68,44)(21,45,69)(22,70,46)(23,47,71)(24,72,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(64,72)(65,71)(66,70)(67,69)>;
G:=Group( (1,25,49)(2,50,26)(3,27,51)(4,52,28)(5,29,53)(6,54,30)(7,31,55)(8,56,32)(9,33,57)(10,58,34)(11,35,59)(12,60,36)(13,37,61)(14,62,38)(15,39,63)(16,64,40)(17,41,65)(18,66,42)(19,43,67)(20,68,44)(21,45,69)(22,70,46)(23,47,71)(24,72,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(64,72)(65,71)(66,70)(67,69) );
G=PermutationGroup([[(1,25,49),(2,50,26),(3,27,51),(4,52,28),(5,29,53),(6,54,30),(7,31,55),(8,56,32),(9,33,57),(10,58,34),(11,35,59),(12,60,36),(13,37,61),(14,62,38),(15,39,63),(16,64,40),(17,41,65),(18,66,42),(19,43,67),(20,68,44),(21,45,69),(22,70,46),(23,47,71),(24,72,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(64,72),(65,71),(66,70),(67,69)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 18A | 18B | 18C | 18D | 18E | 18F | 24A | 24B | 24C | 24D | 36A | ··· | 36F | 36G | ··· | 36L | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 36 | 108 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 36 | 36 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D6 | D8 | D9 | C3⋊D4 | D12 | D18 | D24 | D36 | D72 | S32 | D4⋊S3 | C3⋊D12 | S3×D9 | C3⋊D24 | C3⋊D36 | C3⋊D72 |
kernel | C3⋊D72 | C9×C3⋊C8 | C3×D36 | C36⋊S3 | D36 | C3×C3⋊C8 | C3×C18 | C36 | C3×C12 | C3×C9 | C3⋊C8 | C18 | C3×C6 | C12 | C32 | C6 | C3 | C12 | C9 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 4 | 6 | 12 | 1 | 1 | 1 | 3 | 2 | 3 | 6 |
Matrix representation of C3⋊D72 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
23 | 55 | 0 | 0 | 0 | 0 |
18 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 70 | 45 |
0 | 0 | 0 | 0 | 28 | 42 |
66 | 14 | 0 | 0 | 0 | 0 |
7 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 42 | 3 |
0 | 0 | 0 | 0 | 45 | 31 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,18,0,0,0,0,55,5,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,70,28,0,0,0,0,45,42],[66,7,0,0,0,0,14,7,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,42,45,0,0,0,0,3,31] >;
C3⋊D72 in GAP, Magma, Sage, TeX
C_3\rtimes D_{72}
% in TeX
G:=Group("C3:D72");
// GroupNames label
G:=SmallGroup(432,64);
// by ID
G=gap.SmallGroup(432,64);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,92,254,58,571,10085,292,14118]);
// Polycyclic
G:=Group<a,b,c|a^3=b^72=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations