Extensions 1→N→G→Q→1 with N=C3 and Q=C3×D4⋊S3

Direct product G=N×Q with N=C3 and Q=C3×D4⋊S3
dρLabelID
C32×D4⋊S372C3^2xD4:S3432,475

Semidirect products G=N:Q with N=C3 and Q=C3×D4⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C3×D4⋊S3) = C3×C3⋊D24φ: C3×D4⋊S3/C3×C3⋊C8C2 ⊆ Aut C3484C3:1(C3xD4:S3)432,419
C32(C3×D4⋊S3) = C3×C322D8φ: C3×D4⋊S3/C3×D12C2 ⊆ Aut C3484C3:2(C3xD4:S3)432,418
C33(C3×D4⋊S3) = C3×C327D8φ: C3×D4⋊S3/D4×C32C2 ⊆ Aut C372C3:3(C3xD4:S3)432,491

Non-split extensions G=N.Q with N=C3 and Q=C3×D4⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×D4⋊S3) = C3×D4⋊D9φ: C3×D4⋊S3/D4×C32C2 ⊆ Aut C3724C3.1(C3xD4:S3)432,149
C3.2(C3×D4⋊S3) = He36D8φ: C3×D4⋊S3/D4×C32C2 ⊆ Aut C37212+C3.2(C3xD4:S3)432,153
C3.3(C3×D4⋊S3) = D36⋊C6φ: C3×D4⋊S3/D4×C32C2 ⊆ Aut C37212+C3.3(C3xD4:S3)432,155
C3.4(C3×D4⋊S3) = C9×D4⋊S3central extension (φ=1)724C3.4(C3xD4:S3)432,150

׿
×
𝔽